Estructura física del disco duro
Dentro de la unidad de disco duro hay uno o varios discos (de aluminio o cristal) concéntricos llamados platos (normalmente entre 2 y 4, aunque pueden ser hasta 6 o 7 según el modelo), y que giran todos a la vez sobre el mismo eje, al que están unidos. El cabezal (dispositivo de lectura y escritura) está formado por un conjunto de brazos paralelos a los platos, alineados verticalmente y que también se desplazan de forma simultánea, en cuya punta están las cabezas de lectura/escritura. Por norma general hay una cabeza de lectura/escritura para cada superficie de cada plato. Los cabezales pueden moverse hacia el interior o el exterior de los platos, lo cual combinado con la rotación de los mismos permite que los cabezales puedan alcanzar cualquier posición de la superficie de los platos.
Cada plato posee dos “ojos”, y es necesaria una cabeza de lectura/escritura para cada cara. Si se observa el esquema Cilindro-Cabeza-Sector, a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene dos cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay ocho cabezas para leer cuatro platos, aunque por cuestiones comerciales, no siempre se usan todas las caras de los discos y existen discos duros con un número impar de cabezas, o con cabezas deshabilitadas. Los cabezales de lectura/escritura no tocan el disco, sino que pasan muy cerca (hasta a 3 nanómetros), debido a una finísima película de aire que se forma entre los cabezales y los platos cuando los discos giran (algunos discos incluyen un sistema que impide que los cabezales pasen por encima de los platos hasta que alcancen una velocidad de giro que garantice la formación de esta película). Si alguna de las cabezas llega a tocar una superficie de un plato, causaría muchos daños en él, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7200 revoluciones por minuto se mueve a 129 km/h en el borde de un disco de 3,5 pulgadas).
Direccionamiento
Hay varios conceptos para referirse a zonas del disco:
- Platillos: divididos en pistas concéntricas, las cuales están numeradas desde la pista número cero hasta la última. A mayor cantidad de pistas que tenga el disco duro, mayor será la capacidad de almacenamiento de este.
- Cara: cada uno de los dos lados de un plato.
- Pista : una circunferencia dentro de una cara ; la pista cero (0) está en el borde exterior.
- Cilindros: constituyen conjuntos de pistas que tienen la misma cantidad en los diferentes platillos que conforman al disco duro, es decir, el número de cilindros en un disco duro es igual al número de pistas que hay en cualquier de los platillos de este
- Revoluciones por minuto: o revoluciones por segundo, permiten determinar la velocidad rotacional de un disco duro
- Cabezal: número de cabeza o cabezal por cada cara.
- Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes, aunque la asociación IDEMA ha creado un comité que impulsa llevarlo a 4 KiB . Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología grabación de bits por zonas (Zone Bit Recording , ZBR ) que aumenta el número de sectores en las pistas exteriores, y utiliza más eficientemente el disco duro. Así las pistas se agrupan en zonas de pistas de igual cantidad de sectores. Cuanto más lejos del centro de cada plato se encuentra una zona, esta contiene una mayor cantidad de sectores en sus pistas. Además mediante ZBR, cuando se leen sectores de cilindros más externos la tasa de transferencia de bits por segundo es mayor; por tener la misma velocidad angular que cilindros internos pero mayor cantidad de sectores.
- Sector geométrico: son los sectores contiguos pero de pistas diferentes.
- Clúster: es un conjunto contiguo de sectores.
El primer sistema de direccionamiento que se usó fue el Cilindro-Cabezal-Sector (Cylinder-Head-Sector, CHS), ya que con estos tres valores se puede situar un dato cualquiera del disco. Más adelante se creó otro sistema más sencillo, que actualmente se usa: direccionamiento de bloques lógicos (Logical Block Addressing, LBA), que consiste en dividir el disco entero en sectores y asignar a cada uno un único número.
Factor de Forma
El más temprano «factor de forma» de los discos duros, heredó sus dimensiones de las disqueteras. Pueden ser montados en los mismos chasis y así los discos duros con factor de forma, pasaron a llamarse coloquialmente tipos FDD floppy-disk drives (en inglés).
La compatibilidad del «factor de forma» continúa siendo de 3½ pulgadas (8,89 cm) incluso después de haber sacado otros tipos de disquetes con unas dimensiones más pequeñas.
- 8 pulgadas: 241,3×117,5×362 mm (9,5×4,624×14,25 pulgadas).
En 1979, Shugart Associates sacó el primer factor de forma compatible con los disco duros, SA1000, teniendo las mismas dimensiones y siendo compatible con la interfaz de 8 pulgadas de las disqueteras. Había dos versiones disponibles, la de la misma altura y la de la mitad (58,7 mm). - 5,25 pulgadas: 146,1×41,4×203 mm (5,75×1,63×8 pulgadas). Este factor de forma es el primero usado por los discos duros de Seagate en 1980 con el mismo tamaño y altura máxima de los FDD de 5¼ pulgadas, por ejemplo: 82,5 mm máximo.
Este es dos veces tan alto como el factor de 8 pulgadas, que comúnmente se usa hoy; por ejemplo: 41,4 mm (1,64 pulgadas). La mayoría de los modelos de unidades ópticas (DVD/CD) de 120 mm usan el tamaño del factor de forma de media altura de 5¼, pero también para discos duros. El modelo Quantum Bigfoot es el último que se usó a finales de los 90′.
- 3,5 pulgadas: 101,6×25,4×146 mm (4×1×5.75 pulgadas).
Este factor de forma es el primero usado por los discos duros de Rodine que tienen el mismo tamaño que las disqueteras de 3½, 41,4 mm de altura. Hoy ha sido en gran parte remplazado por la línea «slim» de 25,4 mm (1 pulgada), o «low-profile» que es usado en la mayoría de los discos duros.
- 2,5 pulgadas: 69,85×9,5-15×100 mm (2,75×0,374-0,59×3,945 pulgadas).
Este factor de forma se introdujo por PrairieTek en 1988 y no se corresponde con el tamaño de las lectoras de disquete. Este es frecuentemente usado por los discos duros de los equipos móviles (portátiles, reproductores de música, etc…) y en 2008 fue reemplazado por unidades de 3,5 pulgadas de la clase multiplataforma. Hoy en día la dominante de este factor de forma son las unidades para portátiles de 9,5 mm, pero las unidades de mayor capacidad tienen una altura de 12,5 mm.
- 1,8 pulgadas: 54×8×71 mm.
Este factor de forma se introdujo por Integral Peripherals en 1993 y se involucró con ATA-7 LIF con las dimensiones indicadas y su uso se incrementa en reproductores de audio digital y su subnotebook. La variante original posee de 2 GB a 5 GB y cabe en una ranura de expansión de tarjeta de ordenador personal. Son usados normalmente en iPods y discos duros basados en MP3.
- 1 pulgadas: 42,8×5×36,4 mm.
Este factor de forma se introdujo en 1999 por IBM y Microdrive, apto para los slots tipo 2 de compact flash, Samsung llama al mismo factor como 1,3 pulgadas.
- 0,85 pulgadas: 24×5×32 mm.
Toshiba anunció este factor de forma el 8 de enero de 2004 para usarse en móviles y aplicaciones similares, incluyendo SD/MMC slot compatible con disco duro optimizado para vídeo y almacenamiento para micromóviles de 4G. Toshiba actualmente vende versiones de 4 GB (MK4001MTD) y 8 GB (MK8003MTD) 5 y tienen el récord Guinness del disco duro más pequeño.
Los principales fabricantes suspendieron la investigación de nuevos productos para 1 pulgada (1,3 pulgadas) y 0,85 pulgadas en 2007, debido a la caída de precios de las memorias flash, aunque Samsung introdujo en el 2008 con el SpidPoint A1 otra unidad de 1,3 pulgadas.
El nombre de «pulgada» para los factores de forma normalmente no identifica ningún producto actual (son especificadas en milímetros para los factores de forma más recientes), pero estos indican el tamaño relativo del disco, para interés de la continuidad histórica.
Fuente: Wikipedia