Estructura de las estrellas
El interior de una estrella estable está en un estado de equilibrio hidrostático: las fuerzas sobre cualquier pequeño volumen se contrapesan casi exactamente entre sí. Las fuerzas equilibradas son la fuerza gravitacional hacia adentro y una fuerza hacia fuera debido al gradiente de presión dentro de la estrella. El gradiente de presión se establece mediante el gradiente de temperatura del plasma; la parte exterior de la estrella es más fría que el núcleo. La temperatura en el núcleo de una estrella de secuencia principal o estrella gigante es al menos del orden de 107 K. La temperatura y la presión resultantes en el núcleo de combustión de hidrógeno de una estrella de secuencia principal son suficientes para que se produzca la fusión nuclear y para que se produzca suficiente energía para evitar un colapso adicional de la estrella.
A medida que los núcleos atómicos se fusionan en el núcleo, emiten energía en forma de rayos gamma. Estos fotones interactúan con el plasma circundante, agregando a la energía térmica en el núcleo. Las estrellas de la secuencia principal convierten el hidrógeno en helio, creando una proporción lenta pero constante de helio en el núcleo. Finalmente el contenido de helio se vuelve predominante, y cesa la producción de energía en el núcleo. En cambio, para las estrellas de más de 0,4 M☉, la fusión se produce en una capa de expansión lenta alrededor del núcleo de helio degenerado.
Además del equilibrio hidrostático, el interior de una estrella estable también mantendrá un balance energético de equilibrio térmico. Hay un gradiente de temperatura radial a través del interior que da lugar a un flujo de la energía que fluye hacia el exterior. El flujo saliente de energía que deja cualquier capa dentro de la estrella coincidirá exactamente con el flujo entrante desde abajo.
La zona de radiación es la región del interior estelar donde el flujo de energía hacia el exterior depende de la transferencia radiante de calor, ya que la transferencia de calor conectiva es ineficiente en esa zona. En esta región el plasma no será perturbado, y cualquier movimiento de masa se extinguirá. Sin embargo, si este no es el caso, entonces el plasma se vuelve inestable y se produce la convección, formando una zona convectiva . Esto puede ocurrir, por ejemplo, en regiones donde se producen flujos de energía muy elevados, como cerca del núcleo o en áreas con alta opacidad (haciendo ineficiente la transferencia radiativa de calor) como en el envolvente exterior.
La ocurrecia de convección en la envoltura externa de una estrella de secuencia principal depende de la masa de la estrella. Las estrellas con varias veces la masa del Sol tienen una zona de convección profunda en el interior y una zona radiativa en las capas externas. Las estrellas enanas rojas con menos de 0,4 M☉ son convectivas en todas partes, lo que previene la acumulación de un núcleo de helio. Para la mayoría de las estrellas, las zonas convectivas también varían con el tiempo, a medida que se modifican la edad y la constitución de las estrellas.
La fotosfera es la porción de una estrella que es visible para un observador. Esta es la capa en la que el plasma de la estrella se vuelve transparente a los fotones de luz. A partir de aquí, se libera la energía generada en el núcleo, para propagarse al espacio. Es dentro de la fotosfera donde aparecen manchas solares, regiones de temperatura inferior a la media.
Por encima del nivel de la fotosfera está la atmósfera estelar. En una estrella de secuencia principal como el Sol, el nivel más bajo de la atmósfera, justo por encima de la fotosfera, es la región delgada de la cromosfera, donde aparecen espículas y también donde comienzan las fulguraciones estelares.
Por encima de ella está la región de transición, donde aumenta rápidamente la temperatura a una distancia de solo 100 kilómetros (62 mi). Más allá está la corona, un volumen de plasma sobrecalentado que puede extenderse hacia afuera hasta varios millones de kilómetros. A pesar de su alta temperatura, la corona emite muy poca luz, debido a su baja densidad de gas. Normalmente, la región de la corona del Sol solo es visible durante un eclipse solar.
Desde la corona, se expande un viento estelar de partículas de plasma hacia fuera desde la estrella, hasta que interactúa con el medio interestelar. Para el Sol, la influencia de su viento solar se extiende a lo largo de una región en forma de burbuja llamada heliosfera.
Fuente: Wikipedia