Aplicaciones de la biotecnología


Aplicaciones de la biotecnología

La biotecnología tiene aplicaciones en importantes áreas industriales, como la atención de la salud, con el desarrollo de nuevos enfoques para el tratamiento de enfermedades; la agricultura, con el desarrollo de cultivos y alimentos mejorados; usos no alimentarios de los cultivos, por ejemplo plásticos biodegradables, aceites vegetales y biocombustibles, y cuidado medioambiental a través de la biorremediación, como el reciclaje, el tratamiento de residuos y la limpieza de sitios contaminados por actividades industriales. A este uso específico de plantas en la biotecnología se le llama biotecnología vegetal. Además, se aplica en la genética para modificar ciertos organismos.

Las aplicaciones de la biotecnología son numerosas, y suelen clasificarse en:

  • Biotecnología roja: se aplica a la utilización de biotecnología en procesos médicos. Algunos ejemplos son la obtención de organismos para producir antibióticos, el desarrollo de vacunas más seguras y nuevos fármacos, los diagnósticos moleculares, las terapias regenerativas y el desarrollo de la ingeniería genética para curar enfermedades a través de la manipulación génica. Dentro de ésta, se encuentra:
  • Diagnóstico de enfermedades

La biotecnología ha aportado nuevas herramientas diagnósticas, especialmente útiles para los microorganismos que son difíciles de cultivar, ya que permiten su identificación sin necesidad de aislarlos. Hasta hace muy poco tiempo, todos los métodos se basaban en el cultivo microbiológico, la tinción histológica o las pruebas químicas y determinaciones en suero, algunos métodos en general largos y tediosos que requieren mucha mano de obra y son muy difíciles de manejar. El desarrollo de los inmunodiagnósticos con los anticuerpos monoclonales y de las técnicas que analizan el material genético como la hibridación y secuenciación del ADN o ARN, con la inestimable ayuda técnica de la PCR, han sido un logro biotecnológico importante y decisivo para introducir el concepto del diagnóstico rápido, sensible y preciso. Además, se tiene en cuenta que esta metodología permite su robotización y automatización en el futuro del diagnóstico molecular y genético, que es muy esperanzador.

  • Aportes en la enfermedad del cáncer

La biotecnología ha proporcionado herramientas para el desarrollo de una nueva disciplina, la patología molecular, que permite establecer un diagnóstico del cáncer basado no en la morfología del tumor, como hace la anatomía patológica clásica (microscopía combinada con histoquímica), sino en sus características patogénicas debidas a las alteraciones genéticas y bioquímicas. La patología molecular ha incorporado técnicas de inmunohistoquímica y análisis genético al estudio de las proteínas o de los ácidos nucleicos extraídos de los tumores. Estas técnicas han permitido la detección precoz de las células malignas y también su clasificación. Un tumor que se ha detectado en sus fases iniciales y que está bien clasificado puede eliminarse con facilidad antes de que se produzca su diseminación a otros lugares del organismo, de manera que su detección y clasificación precoz puede salvar más vidas que el desarrollo de nuevas terapias.

  • Biotecnología blanca: también conocida como biotecnología industrial, es aquella aplicada a procesos industriales. Un ejemplo es la obtención de microorganismos para generar un producto químico o el uso de enzimas como catalizadores o inhibidores enzimáticos industriales, ya sea para obtener productos químicos valiosos o para destruir contaminantes químicos peligrosos (por ejemplo, utilizando oxidorreductasas).​ También se aplica a los usos de la biotecnología en la industria textil, en la creación de nuevos materiales, como plásticos biodegradables, y en la producción de biocombustibles. Su principal objetivo es la creación de productos fácilmente degradables, que consuman menos energía y que generen menos desechos durante su producción.​ La biotecnología blanca tiende a consumir menos recursos que los procesos tradicionales utilizados para producir bienes industriales.
  • Biotecnología vegetal o biotecnología verde: es la biotecnología aplicada a procesos agrícolas. Un ejemplo de ello es la obtención de plantas transgénicas capaces de crecer en condiciones ambientales desfavorables o plantas resistentes a plagas y enfermedades. Se espera que la biotecnología verde produzca soluciones más amigables con el medio ambiente que los métodos tradicionales de la agricultura industrial. Un ejemplo de esto es la ingeniería genética en plantas para expresar plaguicidas, con lo que se elimina la necesidad de la aplicación externa de los mismos, como es el caso del maíz Bt. La biotecnología se ha convertido en una herramienta en diversas estrategias ecológicas para mantener o aumentar sustancialmente recursos naturales como los bosques. En este sentido, los estudios realizados con hongos de carácter micorrízico permiten implementar en el campo plántulas de especies forestales con micorriza, las cuales presentarán una mayor resistencia y adaptabilidad que aquellas plántulas que no lo están.
  • Biotecnología azul: también llamada biotecnología marina, es un término utilizado para describir las aplicaciones de la biotecnología en ambientes marinos y acuáticos. Aún se encuentra en una fase temprana de desarrollo. Sus aplicaciones son prometedoras para la acuicultura, cuidados sanitarios, cosmética y productos alimentarios.
  • Biotecnología gris: también llamada biotecnología del medio ambiente, es aquella aplicada al mantenimiento de la biodiversidad, preservación de las especies y la eliminación de contaminantes y metales pesados de la naturaleza. Está muy ligada a la biorremediación, utilizando plantas y microorganismos para reducir contaminantes.
  • Biotecnología naranja: es la biotecnología educativa y se aplica a la difusión de la biotecnología y la formación en esta área. Proporciona información y formación interdisciplinaria sobre temas de biotecnología (por ejemplo, el desarrollo de estrategias educativas para presentar temas biotecnológicos tales como el diseño de organismos para producir antibióticos) para toda la sociedad, incluidas las personas con necesidades especiales, como las personas con problemas auditivos o visuales. Se pretende fomentar, identificar y atraer a personas con vocación científica y altas capacidades o superdotación para la biotecnología.

Biorremediación y biodegradación

La biorremediación es el proceso por el cual se utilizan microorganismos para la limpieza de un sitio contaminado. Los procesos biológicos desempeñan un papel importante en la eliminación de contaminantes y la biotecnología aprovecha la versatilidad catabólica de los microorganismos para degradar y convertir dichos compuestos. En el ámbito de la microbiología ambiental, los estudios basados en el genoma abren nuevos campos de investigación in silico ampliando el panorama de las redes metabólicas y su regulación, así como pistas sobre las vías moleculares de los procesos de degradación y las estrategias de adaptación a las cambiantes condiciones ambientales. Los enfoques de genómica funcional y metagenómica aumentan la comprensión de las distintas vías de regulación y de las redes de flujo del carbono en ambientes no habituales y para compuestos particulares, que sin duda acelerarán el desarrollo de tecnologías de biorremediación y los procesos de biotransformación.

Los entornos marítimos son especialmente vulnerables, ya que los derrames de petróleo en las regiones costeras y en mar abierto son difíciles de contener y sus daños difíciles de mitigar. Además de la contaminación a través de las actividades humanas, millones de toneladas de petróleo entran en el medio ambiente marino a través de filtraciones naturales. A pesar de su toxicidad, una considerable fracción del petróleo que entra en los sistemas marinos se elimina por la actividad de degradación de hidrocarburos llevada a cabo por comunidades microbianas, en particular, por las llamadas bacterias hidrocarbonoclásticas (HCB).​ Además, varios microorganismos, como PseudomonasFlavobacteriumArthrobacter y Azotobacter, pueden utilizarse para degradar petróleo.​ El derrame del barco petrolero Exxon Valdez, en Alaska en 1989, fue el primer caso en el que se utilizó biorremediación a gran escala de manera exitosa: se estimuló la población bacteriana, suplementándole nitrógeno y fósforo, que eran los limitantes del medio.

Se ha propuesto el uso de procesos biológicos para la destoxificación de residuos y remediación de sitios afectados, debido a que han demostrado ser más prácticos y económicamente factibles para el manejo y tratamiento de diferentes tipos de residuos de las actividades de exploración y producción de petróleo. Los métodos de tratamiento biológico dependen de la capacidad de los microorganismos para degradar residuos aceitosos a productos inocuos (dióxido de carbono, agua y biomasa) a través de reacciones bioquímicas. Sin embargo, existen algunas limitantes que dificultan su aplicabilidad como, por ejemplo, la disponibilidad de nutrientes, el alto contenido de arcillas, aireación y la disponibilidad del contaminante, sin mencionar la edad de la contaminación. Estudios realizados recientemente en el Instituto Mexicano del Petróleo demostraron el potencial de aplicación de las tecnologías de biorremediación en sitios contaminados con lodos y recortes de perforación mediante la aplicación de la tecnología de composteo en biopilas.

El uso de nuevas tecnologías para las aplicaciones diarias como el bioplástico, con menor tiempo de degradación, contribuye al mejoramiento del ambiente, disminuyendo la utilización del PET, uno de los principales contaminantes.

Bioingeniería

La ingeniería biológica o bioingeniería es una rama de la ingeniería que se centra en la biotecnología y en las ciencias biológicas. Incluye diferentes disciplinas, como la ingeniería bioquímica, la ingeniería biomédica, la ingeniería de procesos biológicos, la ingeniería de biosistemas, la ingeniería bioinformática, etcétera. Se trata de un enfoque integrado de los fundamentos de las ciencias biológicas y los principios tradicionales de la ingenierías clásicas como la química o la informática.

Los bioingenieros con frecuencia trabajan llevando procesos biológicos de laboratorio a escalas de producción industrial. Por otra parte, a menudo atienden problemas de gestión, económicos y jurídicos. Debido a que las patentes y los sistemas de regulación (por ejemplo, la FDA en los Estados Unidos) son cuestiones de vital importancia para las empresas de biotecnología, los bioingenieros a menudo deben conocer estos temas.

Existe un creciente número de empresas de biotecnología, y muchas universidades de todo el mundo proporcionan programas en bioingeniería y biotecnología de forma independiente. Entre ellas, destacan las de la especialidad en ingeniería bioinformática.

Este es un campo interdisciplinario que se ocupa de los problemas biológicos usando técnicas computacionales propias de la ingeniería informática. Esa interdisciplinariedad hace que sea posible la rápida organización y análisis de los datos biológicos. Este campo también puede denominarse biología computacional, y puede definirse como «la conceptualización de la biología en término de moléculas y, a continuación, la aplicación de técnicas informáticas para comprender y organizar la información asociada a estas moléculas, a gran escala».​ La bioinformática desempeña un papel clave en diversas áreas, tales como la genómica funcional, la genómica estructural y la proteómica, y forma un componente clave en el sector de la biotecnología y la farmacéutica.


Fuente: Wikipedia

Deja un comentario