Resurgimiento de la teoría atómica (siglo XIX)


Resurgimiento de la teoría atómica (siglo XIX)

Tras haber estado aparcado el atomismo desde la antigüedad y únicamente esbozado en los modelos mecánicos corpusculares, la teoría atómica es retomada por John Dalton, quien postuló que los átomos eran partículas indivisibles que permanecen inalteradas en los compuestos, a partir de lo cual se pudieron establecer las leyes estequiométricas, base de la actual estequiometría.

A lo largo del siglo XIX la química estuvo dividida entre los seguidores y detractores de la teoría atómica de Dalton, como Wilhelm Ostwald y Ernst Mach. Los impulsores más decididos de la teoría atómica inicial fueron Amedeo Avogadro, Ludwig Boltzmann, entre otros, que consiguieron grandes avances en la comprensión del comportamiento de los gases. La disputa sobre la existencia de los átomos se zanjaría definitivamente con la explicación del efecto browniano por Albert Einstein en 1905 y los respectivos experimentos de Jean Perrin. Muchos fueron los investigadores que trabajaron bajo la hipótesis atómica. Svante Arrhenius intuyó en parte la estructura interna de los átomos proponiendo su teoría de la ionización en las disoluciones. Aunque su verdadera estructura no se vislumbraría hasta principios del siglo XX, a partir de los trabajos de Ernest Rutherford, seguidos por el modelo atómico de Bohr.

John Dalton

En 1803 el científico inglés John Dalton propuso la ley de Dalton, que relaciona las presiones parciales de los componentes de una mezcla de gases con la presión total de la mezcla.​ El concepto fue descubierto en 1801, y también se conoce como ley de las presiones parciales.

Pero la principal contribución de Dalton a la química fue una nueva teoría atómica en 1803, donde afirmaba que toda la materia está formada por pequeñas partículas indivisibles denominadas átomos. En 1808 Dalton publicó por primera vez A New System of Chemical Philosophy (Un nuevo sistema de filosofía química, 1808-1827), en la que desarrollaba la primera descripción moderna de una teoría atómica. En esta obra identificaba los elementos químicos como un tipo de partículas, y rechaza la teoría de afinidades químicas defendida por Étienne François Geoffroy e Isaac Newton, entre otros. Dalton explicó su teoría formulando una serie de enunciados simples:

  • La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.
  • Los átomos de un mismo elemento son iguales entre sí, tienen la misma masa y propiedades. Los átomos de diferentes elementos tienen masas diferentes.
  • Los átomos permanecen sin división, aun cuando se combinen en las reacciones químicas.
  • Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.
  • Los átomos, al combinarse para formar compuestos guardan relaciones simples.
  • Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.

A pesar de su utilidad y gran aceptación durante todo el siglo XIX, la teoría atómica de Dalton tenía imprecisiones (los dos primeros enunciados no son del todo ciertos) y presentaba muchas lagunas: no aclaraba nada sobre la estructura del átomo, ni explicaba las propiedades de los elementos, ni cuáles eran las causas de que se unieran para formar compuestos.

Además de definir átomos, elementos y compuestos, Dalton infirió las proporciones de algunos elementos en sus compuestos, partiendo de los pesos de sus reactivos, por medio del peso atómico relativo usando al hidrógeno como unidad de masa en la comparación con los demás elementos. Siguiendo las tesis de Jeremias Benjamin Richter (conocido por acuñar el término estequiometría), propuso que cuando los elementos químicos se combinaban para dar más de un compuesto se unen en distintas proporciones fijas y enteras. Esto se conoce como la Ley de las proporciones múltiples y fue incluida en su obra New System of Chemical Philosophy. La ley de las proporciones múltiples es una de las leyes básicas de la estequiometría y uno de los pilares de su teoría atómica. Curiosamente a pesar de la importancia de incluir la idea de átomos como entidades físicas reales en A New System of Chemical Philosophy, y la creación de un sistema de símbolos químicos para ellos, esta obra dedica casi todo su texto a la teoría calórica en lugar de al atomismo.

Por otro lado fue el químico francés Joseph Proust quien propuso la Ley de proporciones definidas, que afirma que los elementos siempre se combinan para formar un determinado compuesto lo hacen en proporciones de números enteros y sencillos, basándose en varios experimentos realizados entre 1797 y 1804.​ La ley de proporciones múltiples y la de proporciones definidas son la base de la estequiometría. Estas dos leyes por sí mismas no prueban la existencia de los átomos, pero son difíciles de explicar sin asumir que los compuestos se forman por la combinación de átomos en proporciones constantes.

Jöns Jacob Berzelius

Un químico sueco discípulo de Dalton, Jöns Jacob Berzelius, se embarcó en un programa sistemático de mediciones cuantitativas precisas de las sustancias químicas, asegurándose de su pureza. A partir de las cuales en 1828 recopiló una tabla de pesos atómicos relativos, donde al oxígeno se le asignaba el 100, y que incluía todos los elementos conocidos en la época. Este trabajo proporcionó pruebas a favor de la teoría atómica de Dalton: que los compuestos químicos inorgánicos estaban formados por átomos combinados en proporciones de números enteros. Determinó la composición elemental exacta de gran número de sustancias. Sus resultados confirmaron la ley de proporciones definidas de Proust. En sus pesos usó como patrón al oxígeno, asignándole el valor exacto de 100, y a partir de él midió el peso de 43 elementos. Al descubrir que los pesos atómicos no eran múltiplos exactos del peso del hidrógeno Berzelius descartó la hipótesis de Prout, que suponía que los elementos estaban formados por átomos de hidrógeno.

Para simplificar los experimentos en su extensa determinación de pesos atómicos introdujo el sistema de símbolos químicos y notación, que publicó en su obra de 1808 Lärbok i Kemien (Manual de química), en la que los nombres de los elementos fueron abreviados con una o dos letras de las iniciales de sus nombres en latín. Este sistema de notación, en el que los elementos se expresan mediante símbolos simples y sus proporciones se indican con números, básicamente es el mismo que se usa actualmente. La única diferencia es que en lugar de poner los números en el subíndice como actualmente (ej: H2O), Berzelius usaba superíndices (H2O).

Se acredita a Berzelius el descubrimiento de los elementos silicio, selenio, torio y cerio. Además los discípulos que trabajaban en el laboratorio de Berzelius identificaron el litio y redescubrieron el vanadio (descubierto originalmente por Andrés Manuel del Río en 1801 y luego descartado al creerlo cromo). Berzelius desarrolló la teoría de los radicales para la combinación química, que mantenía que las reacciones se producen mediante grupos estables de átomos denominados radicales que se intercambian entre las moléculas. Creía que las sales son compuestos de un ácido y una base, y descubrió que los aniones de los ácidos eran atraídos por los electrodos positivos (el ánodo), mientras que los cationes de una base eran atraídos por el electrodo negativo (el cátodo). Berzelius no creía en la teoría del vitalismo, en su lugar pensaba que había una fuerza reguladora que producía la organización de los tejidos de los organismos. Además se atribuye a Berzelius la creación de los términos químicos «catálisis», «polímero», «isómero» y «alótropo», aunque sus definiciones originales difieren considerablemente de las actuales. Por ejemplo el término «polímero» que acuñó en 1833 describía compuestos orgánicos que compartían la misma fórmula empírica pero tenían distinto peso molecular, el mayor era polímero del más pequeño, como la glucosa (C6H12O6, de la que se desconocía su estructura) y el formaldehído (CH2O). Por todo ello Berzelius es reconocido como uno de los padres de la química moderna, junto a Lavoisier, Boyle y Dalton.

Davy y la electrólisis

El químico inglés Humphry Davy fue un pionero en el campo de la electrólisis (que consiste en usar la electricidad en una célula electrolítica donde se producen reacciones de óxido-reducción para separar los compuestos allí contenidos) para aislar varios elementos nuevos. Davy descompuso por electrolisis varias sales fundidas y consiguió descubrir el sodio y el potasio. El potasio fue el primer metal aislado mediante electrólisis, a partir la potasa cáustica (KOH). Antes del siglo XIX se desconocían las diferencias entre las sales de sodio y potasio. El sodio fue aislado el mismo año a partir de la sosa cáustica fundida (NaOH). Cuando Davy se enteró que Berzelius y Pontin preparaban una amalgama (amalgama de calcio) mediante la electrólisis de la cal en mercurio, lo intentó él. Davy consiguió descubrir el calcio en 1808 con la electrólis de la cal en óxido de mercurio.​ Siguió trabajando con la electrólisis durante toda su vida, en 1808, aisló el magnesio, el estroncio y el bario.

Davy también experimentó inhalando gases. Este procedimiento experimental casi resulta fatal en varias ocasiones, pero condujo a descubrir los inusuales efectos del óxido nitroso, que llevarían a conocerlo como gas de la risa. En 1774 el químico sueco Carl Wilhelm Scheele descubrió el cloro y lo denominó «ácido desflogistizado marino» pensando erróneamente que contenía oxígeno. Scheele observó varias propiedades del gas de cloro, como su efecto blanqueante sobre el tornasol, y su efecto mortal sobre los insectos, su color verde amarillento y su olor similar al del agua regia. Sin embargo, Scheele no pudo publicar sus hallazgos a tiempo. En 1810 Humphry Davy le dio al cloro su nombre actual (derivado de la palabra griega χλωρός (khloros) «verde amarillento») insistiendo en que se trataba de un elemento.​ Además demostró que no se podía obtener oxígeno a partir de la sustancia conocida como ácido oximuriático (una solución de HCl). Este descubrimiento rebatió la definición de ácido de Lavoisier que los consideraba compuestos de oxígeno.

El yodo fue descubierto por el químico francés Bernard Courtois en 1811.​ Courtois dio muestras a sus amigos, Charles Bernard Desormes (1777-1862) y Nicolas Clément (1779-1841), para que continuaran la investigación. También le dio algo de sustancia a Joseph Louis Gay-Lussac y al físico André-Marie Ampère. El 6 de diciembre de 1813, Gay-Lussac anunció que se trataba o bien de un nuevo elemento, o bien de un compuesto de oxígeno.​ Además fue Gay-Lussac quien sugirió el nombre del yodo, a partir de la palabra griega ιώδες (iodes) para el violeta (por el color del vapor de yodo). A su vez Ampère dio parte de su muestra a Humphry Davy. Davy hizo algunos experimentos con la sustancia y se dio cuenta de sus similitudes con el cloro.​ Davy mandó una carta el 10 de diciembre a la Royal Society of London donde afirmaba que había identificado un nuevo elemento.​ Lo que desató las discusiones entre Davy y Gay-Lussac sobre quién había identificado primero al yodo como elemento, aunque ambos reconocían a Courtois como el primero en aislarlo.

Gay-Lussac y las leyes de los gases

El químico francés Joseph Louis Gay-Lussac compartía con Lavoisier el interés por el estudio cuantitativo de las propiedades de los gases. Desde su primer periodo de investigación 1801-1802, manifestó que todos los gases se expandían proporcionalmente al aumentar la temperatura. A esta conclusión generalmente se la denomina ley de Charles, ya que Gay-Lussac le concedió el crédito del descubrimiento a Jacques Charles, por haber llegado casi a sus mismas conclusiones en la década de 1780 aunque no las había publicado.​ Esta ley también fue descubierta independientemente por John Dalton alrededor de 1801, aunque la descripción de Dalton es menos meticulosa que la de Gay-Lussac.​ En 1804 Gay-Lussac hizo varios arriesgados ascensos en globo aerostático de hidrógeno hasta alturas por encima 7000 metros sobre el nivel del mar que le permitieron investigar otros aspectos de los gases, una proeza que nadie más realizó en los 50 años siguientes. Tomó medidas de la presión, la temperatura, la humedad y muestras de aire, que más tarde analizó químicamente, además de realizar mediciones magnéticas a varias altitudes.

En 1808 Gay-Lussac anunció lo que probablemente fue su mayor logro: a partir de experimentos propios y de otros dedujo que los gases a volumen fijo mantienen constante la relación entre su presión y la temperatura. Y que los volúmenes de los posibles productos de una reacción entre gases además están en proporción sencilla con los volúmenes de los reactivos. En otras palabras que los gases bajo las mismas condiciones de presión y temperatura reaccionan con otros en proporciones de volumen de números enteros y pequeños. Estas conclusiones se plasmarían en la ley de Gay-Lussac y la Ley de los volúmenes de combinación.

Gay-Lussac también participó junto a su colega profesor en la École Polytechnique, Louis Jacques Thénard, en las primeras investigaciones electroquímicas, y analizó los elementos descubiertos por este medio. Entre sus logros en este campo destaca el descubrimiento del boro, por la descomposición del ácido bórico usando potasio fundido. Ambos investigadores formaron parte de los debates de la época para modificar la definición de los ácidos e impulsar el análisis de los compuestos orgánicos para descubrir su contenido en oxígeno e hidrógeno.

Amedeo Avogadro

Tras la publicación de la teoría atómica de Dalton en 1808, algunas de sus ideas centrales fueron rápidamente adoptadas por la mayoría de los químicos. Sin embargo durante medio siglo permaneció la incertidumbre de cómo se configuraría la teoría atómica y se aplicaría a las situaciones concretas. Por ejemplo con los datos empíricos disponibles hasta el momento varios químicos de distintos países desarrollaron diversos sistemas de pesos atómicos incompatibles. El físico italiano Amedeo Avogadro (1776-1856) publicó en 1811 una obra que mostraba una salida a esta difícil situación. Presentó la hipótesis de que los volúmenes iguales de cualquier gas, a la misma temperatura y presión, contenían el mismo número de moléculas; por lo cual la relación entre los pesos moleculares de dos gases era la misma proporción que la que había entre sus densidades, en las mismas condiciones de presión y temperatura. Además Avogadro razonó que los gases corrientes no estaban formados por átomos solitarios sino por moléculas que contenían dos o más átomos (que era el origen de los distintos pesos atómicos registrados). Así Avogadro fue capaz de resolver el problema con el que se habían topado Dalton y otros cuando Gay-Lussac reportó que por encima del los 100 °C el volumen del vapor de agua era dos veces el volumen del oxígeno usado para formarla. Según Avogadro la molécula de oxígeno se dividía en dos átomos para formar el agua.

La hipótesis de Avogadro fue ignorada durante medio siglo tras haber sido publicada por primera vez. Se han citado muchas razones para este desinterés, incluidos algunos problemas teóricos como el dualismo propuesto por Jöns Jacob Berzelius que consideraba que los compuestos se mantenían juntos por la atracción de las cargas positivas y negativas, lo que haría incompatible la existencia de moléculas formadas por dos átomos eléctricamente similares, como el caso del oxígeno. Además existía la barrera de que muchos químicos eran reacios a adoptar métodos físicos (como las determinaciones de densidad del vapor) para resolver sus problemas. Sin embargo, a mediados de siglo las figuras más prominentes empezaron a considerar intolerable la diversidad caótica de sistemas de pesos atómicos y fórmulas de compuestos en competencia, que proliferaron a causa de la incertidumbre. Además empezaron a acumularse pruebas puramente químicas que indicaban que lo afirmado por Avogadro podría ser cierto después de todo. A mediados de siglo, químicos más jóvenes como Alexander Williamson en Inglaterra, Charles Gerhardt y Charles-Adolphe Wurtz en Francia y August Kekulé en Alemania, empezaron a proponer la reforma de la química teórica para que se ajustara a la teoría de Avogadro.

Inicios de la síntesis orgánica y su industria

Después de que se comprendieran los principios de la combustión, se apoderó de la química otro debate de gran importancia: el vitalismo, la distinción esencial entre la materia orgánica y la inorgánica. Esta teoría asumía que la materia orgánica solo podría ser producida por los seres vivos, atribuyendo este hecho a una vis vitalis (fuerza vital) inherente a la propia vida. En 1827 William Prout clasificó las biomoléculas en tres grupos: carbohidratos, proteínas y lípidos. Pero el debate del vitalismo se zanjó cuando Friedrich Wöhler descubrió accidentalmente en 1828 cómo se podía sintetizar la urea a partir de cianato de amonio, demostrando que la materia orgánica podía crearse de manera química a partir de reactivos inorgánicos. A pesar de ello se mantiene vigente la clasificación en química orgánica e inorgánica, ocupándose la primera esencialmente de los compuestos del carbono y la segunda de los compuestos de los demás elementos.

Anteriormente Friedrich Wöhler y Justus von Liebig realizaron en 1825 el primer descubrimiento confirmado y explicado de isómeros, aunque el término fuera acuñado antes por Berzelius. Trabajando con ácido ciánico y ácido fulmínico, dedujeron correctamente que la isomería era la consecuencia de la diferente colocación de los mismos átomos en la estructura molecular. Además en 1832 Friedrich Wöhler y Justus von Liebig descubrieron y explicaron los grupos funcionales y los radicales en la química orgánica, además de sintetizar por primera vez el benzaldehído.

Por su parte Justus von Liebig realizó investigaciones que contribuyeron de forma crucial en la agricultura y la bioquímica y trabajó en la organización de la química orgánica. Liebig es considerado el padre de la industria de los fertilizantes por su descubrimiento de que el nitrógeno es un nutriente esencial para las plantas, y la formulación de la ley del mínimo que indica la influencia individual de cada nutriente en las cosechas.

Los últimos defensores del vitalismo negaban la cualidad de sustancia orgánica a un producto de desecho como la urea. Pero en 1847 Hermann Kolbe consiguió sintetizar otra sustancia orgánica, el ácido acético, a partir de fuentes totalmente inorgánicas, quedando refutado sin lugar a dudas el vitalismo. La síntesis de la urea abrió el camino para las síntesis orgánica de cientos de productos. Ya en 1838 Alexandre Wosrerenski obtuvo la quinona a partir de la quinina. El desarrollo de la química orgánica en la segunda mitad del siglo XIX estuvo impulsado inicialmente por la búsqueda de nuevos colorantes o tintes sintéticos. Hasta la época solo se podía teñir mediante productos naturales como la cochinilla que resultaban muy caros. El descubrimiento de la anilina por Runge y la primera síntesis de un colorante artificial realizada por Perkin abrió grandes posibilidades comerciales. En 1856, William Henry Perkin, con 18 años, desafiado por su profesor August Wilhelm von Hofmann intentaba sintetizar, usando como precursor alquitrán de hulla, la quinina, el medicamento contra la malaria, que hasta entonces era escasa por ser un producto natural. En uno de los intentos Perkin oxidó anilina usando dicromato potásico, las impurezas de toluidina reaccionaron con la anilina produciendo un precipitado negro, lo que parecía indicar una síntesis fallida. Al limpiar el matraz con alcohol, Perkin notó que la solución se volvía morada, a causa de un subproducto que resultaría ser el primer colorante sintético, la malveína o malva de Perkin. Este descubrimiento originaría la industria de los tintes sintéticos, una de las primeras industrias químicas de éxito. En 1865 Adolf von Baeyer empezó a fabricar el añil, el tinte de los pantalones vaqueros, hasta entonces obtenido del índigo, un hito en la industria de la química orgánica que revolucionó la industria de los tintes.

Otra importante industria de compuestos orgánicos en la época fue la de los explosivos. En 1847, el químico italiano Ascanio Sobrero descubrió la nitroglicerina, que revolucionaría la minería, pero que resultaba extremadamente peligrosa. El químico sueco Alfred Nobel descubrió que cuando la nitroglicerina era absorbida por una sustancia inerte como la tierra de diatomeas, resultaba más segura y manejable; y patentó esta mezcla en 1867 con el nombre de dinamita. Nobel posteriormente combinó la nitroglicerina con varios compuestos de nitrocelulosa, similares al colodión, que en combinación de otro explosivo de nitrato resultó una receta más eficiente. El compuesto obtenido, una sustancia gelatinosa transparente con un poder explosivo mayor que la dinamita, se denominó gelignita y fue patentada en 1876. Este descubrimiento fue seguido por una multitud de combinaciones similares, que se modificaban por la adición de nitrato potásico y otras sustancias.

En 1855, Benjamin Silliman Jr. inició los métodos de craqueo del petróleo, que son la base de la industria petroquímica actual.95​ La importancia de los derivados del petróleo hicieron que la industria derivada de la química orgánica adquiriera la dimensión que tiene actualmente, con productos como los plásticos, los carburantes, los adhesivos, etc. La industria de los plásticos se inició en 1862 cuando Alexander Parkes mostró en la exposición universal de Londres la parkesina, uno de los primeros polímeros sintéticos. Aunque el primer plástico comercializado a gran escala (la baquelita) no empezaría a su distribución hasta el inicio del siglo XX.

La fabricación industrial de fármacos sintéticos se inició con la aspirina en 1897, cuando Felix Hoffmann descubrió en los laboratorios Bayer un proceso para obtener ácido acetil salicílico a gran escala y con gran pureza.

Congreso de Karlsruhe y sus antecedentes

En 1840 Germain Hess propuso la ley de Hess, uno de los primeros pasos hacia la ley de conservación de la energía, que establece que la energía absorbida o desprendida en una reacción depende solo de los reactivos iniciales y productos finales, es independiente del tipo o número de pasos intermedios. En 1848 William Thomson (barón de Kelvin) estableció el concepto de cero absoluto, la temperatura a la que todas las moléculas detienen su movimiento por completo. En 1849 Louis Pasteur descubrió que la mezcla racémica de ácido tartárico se trata de una mezcla de isómeros levógiros y dextrógiros, clarificando la naturaleza de la rotación óptica iniciando el campo de la estereoquímica.

En 1852, August Beer estableció la ley de Beer, que relaciona la intensidad de luz absorbida por la disolución de una sustancia con su concentración y las propiedades de dicha sustancia. Se basa parcialmente en una obra anterior de Pierre Bouguer y Johann Heinrich Lambert. Esta fórmula será la base de la técnica analítica conocida como espectrofotometría,​ el análisis de sustancias químicas mediante la comparación del tipo y cantidad de luz que absorben.

La hipótesis de Avogadro empezó a conseguir aceptación entre los químicos solo después de que su compatriota Stanislao Cannizzaro demostrara su valor en 1858, dos años después de la muerte de Avogadro. La investigación de Cannizzaro originalmente se centraba en el análisis de productos naturales y las reacciones de los compuestos aromáticos. En 1853, descubrió que cuando se trataba el benzaldehído con una base se obtenía una mezcla de ácido benzóico y alcohol bencílico, un fenómeno conocido actualmente como reacción de Cannizzaro. Cannizzaro explicó en un folleto escrito en 1858 que con la aplicación de las ideas de Avogadro se podía construir una teoría estructural química robusta y consistente, y que coincidía con casi todas las pruebas empíricas disponibles en la época. Por ejemplo, señaló que algunos gases elementales eran monoatómicos, aunque la mayoría eran diatómicos, y unos pocos eran incluso más complejos. Otro punto de discusión que trataba fue las fórmulas de los compuestos de metales alcalinos (como el sodio) y los alcalinotérreos (como el calcio). En vista de sus llamativas similitudes químicas la mayoría de los químicos les habían asignado el mismo tipo de fórmula. Cannizzaro discrepaba y situó a estos metales en dos grupos diferentes lo que eliminaba ciertas anomalías que se daban al intentar deducir sus propiedades a partir de sus pesos atómicos. Lamentablemente el folleto de Cannizzaro inicialmente solo se publicó en Italia y tuvo muy poca difusión.

El verdadero impacto del pasquín de Cannizzaro tuvo lugar en el congreso de Karlsruhe, el primer congreso internacional de química que se reunió en la ciudad alemana de Karlsruhe en septiembre de 1860, con el objetivo principal de unificar criterios. Estaba organizado por August Kekulé, Charles Adolphe Wurtz y Karl Weltzien, y congregó a los químicos europeos más importantes de la época. Cannizzaro fue muy elocuente, lógico y didáctico en su exposición, causando una gran impresión en la asamblea. Además su amigo Angelo Pavesi distribuyó su folleto entre todos los asistentes al final de la reunión, cuya lectura convenció definitivamente a la mayoría.​ Así Cannizzaro desempeñó un papel fundamental en la reforma que impuso la tesis de Avogadro. El sistema de formulación y pesos atómicos resultante fue adoptado por la mayoría de los químicos, y es en esencia el que se usa actualmente.

Espectroscopía y tubos de descarga

A mediados del siglo XIX se crearon dos técnicas que resultarían fundamentales para el estudio de la estructura del átomo: la espectroscopía y los tubos de descarga. Entre 1859 y 1860 Robert Bunsen y Gustav Kirchhoff crearon el análisis de espectros. Los espectros atómicos son series de líneas que registran la energía emitida o absorbida por los átomos. En un espectrómetro se excitaba una muestra gaseosa, generalmente calentándola, y se hacía pasar la luz resultante por un prisma que separaba la energía de distintas frecuencias, que se imprimían haciéndolas pasar por una placa fotográfica. Si el espectro era de absorción lo que se descomponía era la luz que se hacía pasar a través de la muestra de gas, y se registraban las frecuencias que absorbía. El resultado era una tira de papel con series de líneas en distintas posiciones según los distintos elementos, que representaban las frecuencias de emisión o absorción características de cada elemento. Bunsen y Kirchoff usaron la espectroscopía para el análisis químico, al poder identificar con esta técnica la presencia de sustancias nuevas en las muestras, y así consiguieron descubrir el cesio y el rubidio. Enseguida los científicos se dieron cuenta de que las líneas de los espectros se disponían de forma periódica en series matemáticamente formulables, y posteriormente se asociarían con la estructura de los átomos.

Los tubos de descarga consistían en tubos de vidrio en los que se hacía parcialmente el vacío, por lo que en su interior quedaba un gas en concentración muy pequeña (denominado gas enrarecido). Dentro se alojaban además dos bornes separados (ánodo y cátodo) de un circuito eléctrico, y se estudiaba lo que ocurría en el interior cuando se hacía pasar una corriente eléctrica a través del tubo. El químico y físico inglés William Crookes fue el pionero en el campo de los tubos de descarga, al inventar el tubo de Crookes, un tubo de descarga experimental en el que pudo estudiar el comportamiento de los rayos catódicos que lo atravesaban. Crookes destacó por estos estudios de los rayos catódicos al resultar fundamentales para el desarrollo de la física atómica, puesto que ayudaron a desvelar la estructura del átomo. Sus investigaciones consistieron en observar los efectos de las descargas eléctricas en el espacio oscuro alrededor del cátodo, situado en el interior de los tubos que tenían una atmósfera muy tenue de gas, actualmente es denominado espacio oscuro de Crookes en su honor. Demostró que los rayos catódicos se desplazaban en líneas rectas y producían fosforescencia al chocar con determinadas sustancias (luego estaban formados por partículas materiales cargadas negativamente). Además Crookes aplicó las técnicas espectroscópicas para estudiar los compuestos de selenio. En 1861 Crookes usó el mismo proceso para descubrir el talio en algunos depósitos seleníferos. Continuó trabajando con el nuevo elemento, lo aisló y estudió sus propiedades, y en 1873 determinó su peso atómico.

Kekulé y la estructura orgánica

La contribución más importante del químico alemán Friedrich August Kekulé von Stradonitz fue su teoría estructural para los compuestos orgánicos, resumida en dos artículos publicados en 1857 y 1858 y desarrollada en gran detalle en su popular obra Lehrbuch der organischen Chemie (Manual de química orgánica), cuyo primer tomo apareció en 1859 y terminó teniendo cuatro volúmenes. Kekulé explicó que los átomos de carbono tetravalentes (que pueden formar cuatro enlaces químicos) se unen unos a otros para formar cadenas, que denominó cadena de carbonos o carboesqueleto, y con el resto de valencias se pueden unir a otros tipos de átomos (como hidrógeno, oxígeno, nitrógeno y cloro). Estaba convencido de que era posible encontrar esta estructura en todas las moléculas orgánicas, al menos en todas las conocidas en la época. Kekule no era el único químico de la época en creerlo. El químico escocés Archibald Scott Couper publicó una teoría similar casi al mismo tiempo, y el ruso Aleksandr Butlerov hizo mucho por clarificar y expandir la teoría. Sin embargo Kekulé fue el principal difusor de la teoría y sus ideas prevalecieron en la comunidad científica.

En 1864, Cato Maximilian Guldberg y Peter Waage, a partir de las ideas de Claude Louis Berthollet propusieron la ley de acción de masas. En 1865, Johann Josef Loschmidt determinó el número exacto de moléculas que contiene un mol de sustancia, posteriormente denominado constante de Avogadro.

En 1865, August Kekulé se basó parcialmente en el trabajo de Loschmidt, entre otros, para establecer la estructura del benceno, explicándola como un anillo de seis átomos de carbono con enlaces simples y dobles alternados. La novedosa propuesta de Kekulé de estructura cíclica del benceno fue muy polémica pero nadie en la época aportó una mejor. Actualmente se sabe que gran parte de los compuestos orgánicos contienen estructuras cíclicas como el benceno, denominadas aromáticas.

Mendeléyev y la tabla periódica

En 1869, los científicos ya habían descubierto 66 elementos diferentes y habían determinado su masa atómica. Comprobaron que algunos elementos tenían propiedades químicas similares y hubo varios intentos de clasificarlos según algunas de ellas con más o menos acierto. En 1829 el químico J. W. Döbereiner organizó un sistema de clasificación de elementos en el que estos se congregaban en grupos de tres denominados tríadas. Las propiedades químicas de los elementos de una tríada eran similares y sus propiedades físicas variaban de manera ordenada con su masa atómica. En 1862 Alexandre-Emile Béguyer de Chancourtois publicó su hélice telúrica, una clasificación tridimensional de los elementos. En 1864 John Newlands propuso la ley de las octavas y el mismo año Lothar Meyer desarrolló otra clasificación con 28 elementos organizados según su valencia.

Pero quien terminó dando sentido a una lista ordenada de los elementos conocidos (que nos ayudaría a entender la estructura interna de los átomos) fue Dmitri Ivanovich Mendeléyev al desarrollar la primera tabla periódica de los elementos moderna. El químico ruso Mendeléyev intuyó que había algún tipo de orden entre los elementos y pasó más de treinta años recolectando datos y dando forma al concepto, inicialmente con la intención de aclarar el desorden para sus alumnos. Mendeléyev acomodó los 66 elementos conocidos en ese momento en su tabla periódica por orden creciente de peso atómico, pero también atendiendo a sus propiedades, y acertó al dejar huecos en la tabla para elementos todavía no descubiertos. Mendeléyev descubrió que cuando se ordenaban los elementos químicos en fila según aumentaba el peso atómico, hasta llegar a uno que tuviera propiedades similares al inicial, que se situaría en una nueva fila debajo, en la tabla resultante se encontraban patrones recurrentes, o periodicidad, en las propiedades de los elementos tanto en las filas (periodos) como en las columnas (grupos). Publicó su descubrimiento en 1869 en su obra Principios de química. Además su sistema le permitió predecir con bastante exactitud las propiedades de elementos no descubiertos hasta el momento. En su versión de la tabla de 1871, predijo las propiedades que tendrían probablemente tres elementos todavía no descubiertos a los que denominó ekaboro (Eb), ekaaluminio (Ea) y ekasilicio (Es), que coincidieron con las del escandio, galio y germanio, al ser descubiertos, lo que consiguió la aceptación generalizada de este sistema de ordenación.

Sin embargo, la tabla de Mendeléyev no era del todo perfecta. Posteriormente tras el descubrimiento de varios elementos nuevos y de perfeccionarse los métodos de determinación de las masas atómicas, se descubrió que algunos elementos no estaban en el orden correcto. La causa de este problema la determinaría más adelante el químico inglés Henry Moseley, cuando se conociera mejor la naturaleza del átomo, quién descubrió que lo que determinaba un claro patrón periódico de las propiedades de los átomos, es el número de protones que contiene cada elemento en su núcleo, o número atómico, y no la masa atómica. Además no aparecía ninguna columna para los gases nobles, pero en esas fechas no se conocía todavía ninguno.

Josiah Willard Gibbs

La obra del físico estadounidense J. Willard Gibbs sobre las aplicaciones de la termodinámica fue fundamental para transformar la química física en una ciencia deductiva rigurosa. Durante el periodo de 1876 a 1878, Gibbs trabajó en los principios de la termodinámica, aplicándolos a los complejos procesos implicados en las reacciones químicas. Definió el concepto de potencial químico, o la tendencia de que una reacción química se produzca. En 1876, publicó su obra más famosa, On the Equilibrium of Heterogeneous Substances (Sobre el equilibrio de las substancias heterogéneas), una recopilación de sus trabajos de termodinámica y química física en la que desarrolla el concepto de energía libre para explicar la base física del equilibrio químico.​ Con las ecuaciones de la energía libre, Gibbs relaciona matemáticamente todas las variables involucradas en una reacción química (temperatura, presión, volumen, energía y entropía). En este ensayo donde inicia sus teorías sobre las fases de la materia, considera a cada estado de la materia es una fase y cada sustancia un componente y las relacionó en una ecuación, conocida como regla de las fases de Gibbs, que sirve para determinar los grados de libertad de un sistema en equilibrio. En esta obra quizás su contribución más destacada es la introducción del concepto de energía libre, por lo que una de sus formas se denomina actualmente energía libre de Gibbs en su honor. La energía libre de Gibbs relaciona la tendencia de un sistema físico o químico a disminuir su energía y aumentar su desorden (entropía) simultáneamente en los procesos naturales espontáneos. Las conclusiones de Gibbs permiten a los investigadores calcular los cambios en la energía libre de un proceso, como una reacción química, y determinar la velocidad a la que ocurrirá. Como virtualmente todos los procesos químicos y muchos físicos implican cambios de este tipo, su obra tiene un impacto significativo tanto en los aspectos teóricos como experimentales de esta ciencia.

En 1877, Ludwig Boltzmann estableció las causas estadísticas de muchos de los conceptos químicos y físicos, incluida la entropía, y la relación con las distribuciones de las velocidades moleculares en un gas.​ Junto a Boltzmann y James Clerk Maxwell, Gibbs creó una nueva rama de la física teórica denominada mecánica estadística (término que él acuño), que explica que las leyes de la termodinámica son la consecuencia de las propiedades estadísticas de grandes conjuntos de partículas en interacción. Las relaciones causa-efecto que estableció Gibbs entre las propiedades estadísticas de los sistemas con muchas partículas y las leyes fenomenológicas de la termodinámica (T, p, V, S y U) se presentaron en su influyente libro de texto Elementary Principles in Statistical Mechanics (Principios elementales de mecánica estadística), publicado en 1902, un año antes de su muerte. En esta obra Gibbs revisa en profundidad la relación entre las leyes de la termodinámica y la teoría estadística del movimiento molecular.

Van’t Hoff y Arrhenius

En 1873, Jacobus Henricus van ‘t Hoff y Joseph Achille Le Bel trabajando independientemente desarrollaron un modelo de enlace químico que explicaba los experimentos de quiralidad de Pasteur y proporcionaba una causa física para la actividad óptica de los compuestos quirales. La publicación de van ‘t Hoff Voorstel tot Uitbreiding der Tegenwoordige in de Scheikunde gebruikte Structuurformules in de Ruimte (Propuesta para el desarrollo de las fórmulas químicas estructurales de tres dimensiones), que constaba de doce páginas de texto y una de diagramas, impulsó el desarrollo de la estereoquímica. En esta publicación se trata del concepto de «átomo de carbono asimétrico» que explica la existencia de numerosos isómeros, que no se podían explicar con las fórmulas estructurales existentes hasta entonces. Además señalaba que existía relación entre la actividad óptica y esta asimetría del átomo de carbono. Además, en 1884 Jacobus Henricus van ‘t Hoff publicó Études de Dynamique chimique (Estudios de química dinámica), un influyente ensayo sobre cinética química.​ En esta obra explica la relación termodinámica entre el calor de reacción y el desplazamiento del equilibrio como resultado de una variación de temperatura. A volumen constante, el equilibrio de un sistema tiende a desplazarse hacia la dirección que se oponga al cambio de temperatura. Este principio sería ampliado al año siguiente por Henry Louis Le Châtelier, incluyendo los cambios de volumen y presión. Esta regla denominado principio de Le Chatelier, explica los efectos que ejercen las influencias externas sobre la dinámica del equilibrio químico.

En 1883, científico sueco Svante Arrhenius desarrolló la teoría iónica para explicar la conductividad de los electrolitos, suponiendo que algunos solutos que en estado sólido eran neutros se componían de partículas cargadas (iones) que compensaban su carga entre sí, y que se separaban en el seno de una disolución. En 1885 J. H. van ‘t Hoff publicó L’Équilibre chimique dans les Systèmes gazeux ou dissous à I’État dilué (Equilibrio químico en sistemas gaseosos o de soluciones muy diluidas), donde demuestra que la «presión osmótica» en las soluciones que están suficientemente diluidas es proporcional a la concentración y la temperatura absoluta, de forma que esta presión puede expresarse por una fórmula que solo se diferencia de la ecuación de presión de los gases en un coeficiente i. También determinó el valor de este i por varios métodos. Así van ‘t Hoff pudo probar que las leyes de la termodinámica para los gases también podían aplicarse a las soluciones diluidas. Además sus leyes para la presión demostraron la validez de la teoría de la disociación electrolítica de Arrhenius.

Descubrimientos de finales del siglo XIX

En 1884, Hermann Emil Fischer propuso la estructura de la purina, la base de muchas biomoléculas, que posteriormente consiguió sintetizar en 1898. Además inició el trabajo de la química de la glucosa y otros azúcares relacionados.

En 1885, Eugene Goldstein le dio su nombre a los rayos catódicos, y en 1888 continuando su investigación sobre tubos de descarga descubrió los rayos canales, lo que posteriormente ayudaría a desvelar la estructura del núcleo de los átomos.

En 1892, John Strutt descubrió que el nitrógeno que se encontraba en los compuestos químicos tenía un peso menor que el atmosférico, y supuso que se trataba porque estos compuestos incluían algún gas más ligero que disminuía el peso total. En cambio el químico escocés William Ramsay atribuyó esta discrepancia a la presencia de un gas más pesado todavía no descubierto mezclado con el nitrógeno atmosférico. Usando dos métodos diferentes para eliminar todos los gases conocidos del aire, Ramsay y Rayleigh consiguieron aislar un nuevo gas en 1894, y anunciaron que habían descubierto un gas, monoatómico e inerte, que constituía casi el 1 % de aire atmosférico, al que llamaron argón, el primero de los gases nobles en ser descubierto. Al año siguiente Ramsay liberó otro gas inerte de un mineral llamado cleveíta, que resultó ser el helio, cuyo espectro coincidía con el de la luz solar, lo que demostraba su presencia en el Sol y determinó que se nombrara como la deidad solar griega, Helios. En su obra The Gases of the Atmosphere (Los gases de la atmósfera, 1896), Ramsay predijo que según las posiciones del helio y el argón en la tabla periódica existirían al menos tres gases nobles más. En 1898 Ramsay y el químico inglés Morris W. Travers aislaron estos tres elementos (el neón, kriptón y xenón) a partir del aire licuado. Posteriormente (1903) William Ramsay trabajó con Frederick Soddy para demostrar que las partículas alfa eran núcleos de helio que se desprendían continuamente en la descomposición del radio.

En 1893, Alfred Werner descubrió la estructura octaédrica de los complejos de cobalto, el primer complejo de coordinación.

En 1897, Joseph John Thomson descubrió el electrón, usando un tubo de rayos catódicos. En 1898 Wilhelm Wien demostró que los rayos canales (una corriente de iones positivos) podían desviarse por los campos magnéticos, y que la desviación era proporcional a su relación masa carga. Este descubrimiento además de ayudar a conocer la estructura del núcleo de los átomos, sería la base para desarrollar la técnica de análisis químico denominada espectrometría de masas.

Marie y Pierre Curie

Pierre Curie y Marie Curie fue un matrimonio franco-polaco de científicos famoso por su investigación pionera en el campo de la radioactividad. Se considera que la investigación que realizaron ambos y Henri Becquerel fue la piedra angular de la era nuclear. Marie quedó fascinada con la obra de Becquerel, el físico francés que descubrió en 1896 que el uranio emitía rayos similares a los rayos X descubiertos por Wilhelm Röntgen. Marie Curie empezó a estudiar el uranio a finales de 1897 y teorizó, según un artículo suyo de 1904: «que la emisión de rayos de los compuestos de uranio es una propiedad del propio metal, que es una propiedad atómica del elemento uranio independiente de su estado químico o físico.» Curie continuó y amplió el trabajo de Becquerel realizando sus propios experimentos sobre las emisiones del uranio. Descubrió que las emisiones de rayos eran constantes, sin importar la forma o las condiciones en que se encontrara el uranio, por lo que supuso que se debían a la estructura atómica del elemento. Este descubrimiento supondría el inicio de la física atómica. Los Curie acuñaron el término radioactividad para describir el fenómeno.

Pierre y Marie prosiguieron estudiando las sustancias radiactivas separando las presentes en toneladas de la mena de uranio y usando el electrómetro para medir la radiación y detectar cualquier mínima cantidad de elementos radiactivos, una tarea que requiere recursos industriales y que ellos consiguieron en condiciones relativamente rudimentarias. Trabajando con el pechblenda la pareja descubrió un nuevo elemento radiactivo, al que llamaron polonio, en honor del país de origen de Marie. El 21 de diciembre de 1898, descubrieron la presencia de otro elemento radiactivo en la pechblenda, el radio. Entonces la pareja Curie inició el trabajo para aislar el polonio y el radio de sus compuestos naturales, para demostrar que eran elementos químicos. En 1902, los Curie anunciaron que habían conseguido un decigramo de radio puro. Les llevó tres años aislar el radio pero nunca fueron capaces de aislar el polonio. Los Curie, junto a Henri Becquerel, recibieron el Premio Nobel de física de 1903 por su estudio de la radiactividad. Marie Curie recibió el Premio Nobel de química en 1911 por el descubrimiento del radio y el polonio. Por ello Marie Curie fue la primera mujer en recibir un Premio Nobel, la primera persona en recibir dos Premios Nobel y la única en recibirlos en dos disciplinas científicas diferentes.

Aunque Pierre trabajó junto a Marie en la extracción de sustancias de las minas minerales se concentró en el estudio físico de la radiación de los nuevos elementos (incluidos los efectos químicos y luminosos). Utilizando campos magnéticos sobre los rayos que emitía el radio, consiguió demostrar que contenía partículas positivas, negativas y radiación ionizante, que Ernest Rutherford posteriormente denominaría rayos alfa, beta y gamma. Pierre entonces estudió estas radiaciones por calorimetría y observó los efectos físicos del radio, abriendo el camino de la radioterapia, y posteriormente Marie Curie supervisó los primeros tratamientos de radioterapia contra el cáncer. Pierre Curie además estudió el magnetismo y descubrió que las sustancias ferromagneticas pierden sus propiedades magnéticas por encima de una temperatura crítica, denominada temperatura de Curie. Lamentablemente falleció tempranamente en 1906 atropellado por un carruaje en París. Sus obras completas se publicaron en 1908.


Fuente: Wikipedia

David
Author: David

Deja un comentario