Radiación de las estrellas


Radiación de las estrellas

La energía producida por las estrellas, producto de la fusión nuclear, se irradia al espacio tanto como radiación electromagnética como radiación de partículas. Esta última, emitida por una estrella, se manifiesta como el viento estelar, que fluye desde las capas externas en forma de protones cargados eléctricamente y partículas alfa y beta. Aunque casi sin masa, también existe un flujo constante de neutrinos que emanan del núcleo de la estrella.

La producción de energía en el núcleo es la razón por la cual las estrellas brillan tan intensamente: cada vez que dos o más núcleos atómicos se fusionan para formar un único núcleo atómico de un nuevo elemento más pesado, se liberan fotones de rayos gamma, producto de la fusión nuclear. Esta energía se convierte en otras formas de energía electromagnética de menor frecuencia, como la luz visible cuando alcanza las capas exteriores de la estrella.

El color de una estrella, determinado por la frecuencia más intensa de la luz visible, depende de la temperatura de las capas exteriores de la estrella, incluida su fotosfera.​ Además de la luz visible, las estrellas también emiten formas de radiación electromagnética que son invisibles para el ojo humano. De hecho, la radiación electromagnética estelar abarca todo el espectro electromagnético, desde las longitudes de onda más largas de las ondas de radio pasando por el infrarrojo, la luz visible y la ultravioleta, hasta las más cortas de los rayos X y los rayos gamma. Desde el punto de vista de la energía total emitida por una estrella, no todos los componentes de la radiación electromagnética estelar son significativos, pero todas las frecuencias proporcionan una visión de la física de la estrella.

Usando el espectro estelar, los astrónomos pueden también determinar la temperatura superficial, la gravedad superficial, la metalicidad y la velocidad de rotación de una estrella. Si se encuentra la distancia de la estrella, tal como midiendo el paralaje, entonces se puede derivar la luminosidad de la estrella. La masa, el radio, la gravedad de la superficie y el período de rotación pueden estimarse a partir de modelos estelares. (La masa se puede calcular para las estrellas en sistemas binarios midiendo sus velocidades orbitales y las distancias. Se ha utilizado la microlente gravitacional para medir la masa individual de una estrella.) Con estos parámetros, los astrónomos también pueden estimar la edad de la estrella.

Luminosidad de las estrellas

La luminosidad de una estrella es la cantidad de luz y otras formas de energía radiante irradiada por unidad de tiempo. Cuenta con unidades de potencia. La luminosidad de una estrella está determinada por su radio y temperatura superficial. Muchas estrellas no irradian uniformemente en toda su superficie. Por ejemplo, la estrella de rotación rápida Vega tiene un flujo de energía más alto (potencia por unidad de área) en sus polos que a lo largo de su ecuador.

Las manchas superficiales de una estrella con temperatura más baja y luminosidad que el promedio se conocen como manchas estelares. Por lo general, las estrellas pequeñas y enanas, como nuestro Sol, tienen manchas esencialmente sin rasgos con solo pequeñas manchas. Por el contrario, las estrellas gigantes presentan manchas estelares mucho más grandes y más evidentes,​ y también exhiben una fuerte oscurecimiento del limbo estelar. Es decir, el brillo disminuye hacia el borde del disco estelar.​ Las estrellas fulgurantes enanas rojas tales como UV Ceti pueden también poseer prominentes manchas características.

Magnitud de las estrellas

El brillo aparente de una estrella se expresa en términos de su magnitud aparente. Es una función de la luminosidad de la estrella, su distancia de la Tierra, y la alteración de la luz de la estrella mientras que pasa a través de la atmósfera de la Tierra. La magnitud intrínseca o absoluta está directamente relacionada con la luminosidad de la estrella, y es la magnitud aparente de una estrella si la distancia entre la Tierra y la estrella fuera de 10 parsecs (32,6 años luz).

Número de estrellas más brillantes por magnitud
Aparente
magnitud
Número
de estrellas
0 4
1 15
2 48
3 171
4 513
5 1,602
6 4,800
7 14,000

Tanto las escalas de magnitud aparente como absoluta son unidades logarítmicas: una diferencia de número entero en magnitud es igual a una variación de brillo de aproximadamente 2,5 veces​ (la raíz quinta de 100 o aproximadamente 2,512). Esto significa que una estrella de primera magnitud (+1.00) es aproximadamente 2,5 veces más brillante que una estrella de segunda magnitud (+2.00), y unas 100 veces más brillante que una estrella de sexta magnitud (+6.00). Las estrellas más débiles visibles a simple vista bajo condiciones visuales idóneas son de magnitud +6.

En las escalas tanto de magnitud aparente como absoluta, cuanto menor es el número de magnitud, más brillante es la estrella; por el contrario, cuanto mayor sea el número de magnitud, más débil será la estrella. Las estrellas más brillantes, en cualquier escala, tienen números de magnitudes negativas. La variación de brillo (ΔL) entre dos estrellas se calcula restando el número de magnitud de la estrella más brillante (mb) del número de magnitud de la estrella más débil (mf), utilizando la diferencia como exponente para el número de base 2,512; es decir:

{\displaystyle \Delta {m}=m_{\mathrm {f} }-m_{\mathrm {b} }}
{\displaystyle 2.512^{\Delta {m}}=\Delta {L}}

En relación con la luminosidad y la distancia de la Tierra, la magnitud absoluta de una estrella (M) y la magnitud aparente (m) no son equivalentes;​ Por ejemplo, la estrella brillante Sirio tiene una magnitud aparente de –1,44, pero tiene una magnitud absoluta de +1,41.

El Sol tiene una magnitud aparente de —26,7, pero su magnitud absoluta es solo +4,83. Sirio, la estrella más brillante del cielo nocturno vista desde la Tierra, es aproximadamente 23 veces más luminosa que el Sol, mientras que Canopus, la segunda estrella más brillante del cielo nocturno con una magnitud absoluta de –5,53, es aproximadamente 14 000 veces más luminosa que el Sol. Sin embargo, aunque Canopus es mucho más luminosa que Sirio, esta aparece más brillante que Canopus. Esto se debe a que Sirio está a solo 8,6 años luz de la Tierra, mientras que Canopus está mucho más lejos, a una distancia de 310 años luz.

A partir de 2006 la estrella con la magnitud absoluta más alta conocida es LBV 1806-20, con una magnitud de –14,2. Esta estrella es al menos 5 000 000 de veces más luminosa que el Sol.​ Las estrellas menos luminosas que se conocen a 2017 se encuentran en el cúmulo NGC 6397. Las enanas rojas más débiles en el cúmulo eran de magnitud 26, mientras que también fue descubierta una enana blanca de magnitud 28. Estas estrellas débiles son tan oscuras que su luz sería tan poco brillante como una vela de cumpleaños en la Luna vista desde la Tierra.


Fuente: Wikipedia

Deja un comentario