Mecánica cuántica


Mecánica cuántica

En la década de 1920 se establecerán los fundamentos de la mecánica cuántica, que será decisiva para la desvelar la naturaleza y el comportamiento de las partículas subatómicas a partir de entonces.

En 1924, el físico Louis de Broglie publicó su revolucionaria tesis, en la que presentó la teoría de que el electrón se comporta con una dualidad onda partícula. En su época se consideraba que las ondas y los corpúsculos de materia y luz se comportaban de forma diferente, pero de Broglie sugirió que estas características aparentemente diferentes en realidad son el mismo comportamiento observado desde perspectivas diferentes — que las partículas pueden comportarse como ondas, y que las ondas (la radiación) pueden comportarse como las partículas. La propuesta de Broglie ofrecía una explicación a las restricciones de movimiento de los electrones en el interior del átomo. Las primeras publicaciones con la idea de «ondas materiales» de De Broglie despertaron poca atención entre los físicos de la época, pero una copia de su tesis doctoral cayó en manos de Albert Einstein, que la recibió con entusiasmo. Einstein no solo la difundió sino que trabajó para desarrollar el concepto.

En 1925, el físico austriaco Wolfgang Pauli estableció el principio de exclusión de Pauli, que afirmaba que dos electrones alrededor del mismo núcleo no pueden ocupar el mismo estado cuántico simultáneamente, que está definido por cuatro números cuánticos. Pauli hizo importantes contribuciones en los campos de la mecánica cuántica y teoría cuántica. Fue galardonado con el Premio Nobel de Física 1945 por su descubrimiento del principio de exclusión, además de por sus estudios del estado sólido y su hipótesis anticipando la existencia del neutrino.

Ecuación general de Schrödinger para una onda estacionaria:

{\displaystyle \mathrm {i} \hbar {\frac {\partial \psi (x,t)}{\partial t}}=-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}\psi (x,t)}{\partial x^{2}}}+V(x)\psi }

En 1926, a la edad de 39 años, el físico teórico Erwin Schrödinger creó la obra considerada el pilar de la mecánica cuántica ondulatoria. En esta obra describe su ecuación de diferenciales parciales que es la ecuación básica de la mecánica cuántica y que supone para la mecánica del átomo lo mismo que las leyes de Newton supusieron para la comprensión del movimiento de los planetas. Adoptando la propuesta de Louis de Broglie en 1924 de que la materia tiene una naturaleza dual y que en algunas situaciones se comportan como las ondas, Schrödinger desarrolla la teoría de este comportamiento plasmándolo en una ecuación de onda, actualmente conocida como la ecuación de Schrödinger. Las soluciones de la ecuación de Schrödinger, a diferencia de las ecuaciones de Newton, son funciones de onda que describen la probabilidad de que ocurra un hecho físico. La secuencia de trayectorias y posiciones fácilmente visualizables de la mecánica de Newton, en la mecánica cuántica se reemplazan por una noción más abstracta de probabilidades, lo que la hace más oscura y origina algunas paradojas. Por ejemplo a partir del modelo atómico de Schrödinger los electrones ya no se describirán en órbitas alrededor del átomo sino en orbitales.

El físico teórico alemán Werner Heisenberg también fue uno de los creadores clave de la mecánica cuántica. En 1925, Heisenberg descubrió la manera de formular las ecuaciones de la mecánica cuántica en términos de matrices. Por este descubrimiento sería galardonado con el Premio Nobel de Física de 1932, y en el futuro facilitaría el cálculo computacional. En 1927 publicó su principio de incertidumbre, en el que basó su pensamiento y por el que es más famoso. Con él Heisenberg demostró que al estudiar un electrón en un átomo se podía determinar su posición o su velocidad, pero era imposible conocer las dos al mismo tiempo.

En 1928, Paul Dirac formuló la ecuación de Dirac, una ecuación de onda relativista para partículas de espín ½, como el electrón, que es completamente consistente tanto con los principios de la mecánica cuántica como con la teoría de la relatividad especial, cuya aplicación a los átomos hidrogenoides da lugar al modelo atómico de Dirac.

Al comprobarse que los átomos no hacen honor a su nombre (se dividen en partes), el comportamiento ondulatorio de las partículas subatómicas y la potencialidad energética de las reacciones nucleares se redefiniría el ámbito de la química (como única ciencia que estudiaba la materia) quedando el estudio de la estructura del interior de átomo en el campo de la física.


Fuente: Wikipedia

Deja un comentario