La biología en el Siglo XX
A principios del siglo XX la investigación biológica era en gran medida una tarea profesional. La mayor parte del trabajo todavía se realizaba al modo de la historia natural, que enfatizaba al análisis morfológico y filogenético por sobre las explicaciones causales basadas en experimentos. Sin embargo, los fisiólogos experimentales y embriólogos antivitalistas, especialmente en Europa, fueron cada vez más influyentes. El gran éxito de los enfoques experimentales hacia el desarrollo, la herencia y el metabolismo en las décadas de 1900 y 1910 demostró el poder de la experimentación en la biología. En las décadas siguientes, el trabajo experimental sustituyó a la historia natural como el método dominante de investigación.
Ecología y ciencias ambientales
A principios del siglo XX, los naturalistas se enfrentaron a una creciente presión para añadir rigor y preferentemente experimentación a sus métodos, tal como las nuevas y prominentes disciplinas biológicas basadas en el laboratorio habían hecho. La ecología había nacido como una combinación de la biogeografía con el ciclo biogeoquímico, concepto promovido por los químicos; los biólogos de campo desarrollaron métodos cuantitativos como el cuadrado de muestreo (quadrat) y adaptaron instrumentos de laboratorio y cámaras para su utilización en el campo con tal de separar sus trabajos de la historia natural tradicional. Los zoólogos y botánicos hicieron lo posible para mitigar el carácter impredecible de los seres vivos, llevando a cabo experimentos de laboratorio y estudiando entornos naturales semicontrolados tales como jardines; nuevas instituciones como la Estación Carnegie para la Evolución Experimental y el Laboratorio de Biología Marina proporcionaron entornos más controlados para estudiar organismos a través de sus ciclos de vida completos.
El concepto de sucesión ecológica, promovido en las décadas de 1900 y 1910 por Henry Chandler Cowles y Frederic Clements, fue importante en los inicios de ecología de las plantas. Las ecuaciones presa-depredador de Alfred J. Lotka, los estudios de la biogeografía y la estructura bioquímica de los lagos y ríos (limnología) de G. Evelyn Hutchinson y los estudios sobre la cadena alimenticia animal de Charles Elton fueron pioneros entre la serie de métodos cuantitativos que colonizaron las especialidades ecológicas en desarrollo. La ecología se convirtió en una disciplina independiente en las décadas de 1940 y 1950 después de que Eugene P. Odum sintetizara muchos de los conceptos de la ecología de los ecosistemas, poniendo a las relaciones entre grupos de organismos (especialmente relaciones de materia y energía) en el centro del campo.
En la década de 1960, debido a que los teóricos evolutivos exploraron la posibilidad de múltiples unidades de selección, los ecologistas se volvieron hacia enfoques evolutivos. En la ecología de poblaciones, el debate sobre la selección de grupos fue breve pero intenso; durante la década de 1970, la mayoría de los biólogos concordaban en que la selección natural era rara vez efectiva a nivel de organismos individuales. La evolución de los ecosistemas, sin embargo, se convirtió en un foco de investigación permanente. La ecología se expandió rápidamente con el aumento del movimiento ambientalista; el Programa Biológico Internacional trató de aplicar los métodos de la gran ciencia (que había tenido mucho éxito en las ciencias físicas) a la ecología de ecosistemas y a los problemas ambientales apremiantes, mientras que los esfuerzos independientes de menor escala, tales como la biogeografía de islas y el Bosque Experimental de Hubbard Brook ayudaron a redefinir el ámbito de una disciplina cada vez más diversa.
Genética clásica, síntesis moderna y teoría evolutiva
1900 marcó el llamado redescubrimiento de Mendel: Hugo de Vries, Carl Correns y Erich von Tschermak llegaron independiente a las leyes de Mendel (que en realidad no están presentes en el trabajo de Mendel). Poco después, los citólogos (biólogos celulares) propusieron que los cromosomas eran el material hereditario. Entre 1910 y 1915, Thomas Hunt Morgan y los «drosofilistas» con su mosca de laboratorio forjaron estas dos ideas —ambas controversiales— dentro de la «teoría cromosómica mendeliana» de la herencia. Ellos cuantificaron el fenómeno de ligamiento genético y postularon que los genes residen en los cromosomas como las cuentas de una cadena; plantearon la hipótesis del entrecruzamiento cromosómico para explicar el ligamiento y la construcción de mapas genéticos de la mosca de la fruta Drosophila melanogaster, que se convirtió en un organismo modelo ampliamente utilizado.
Hugo de Vries trató de vincular a la nueva genética con la evolución; basándose en su trabajo sobre la herencia y la hibridación, propuso una teoría de mutacionismo, que fue ampliamente aceptada en el siglo XX. El lamarckismo también tuvo muchos adeptos. El darwinismo era visto como incompatible con los rasgos continuamente variables estudiados por la biometría, que parecían sólo parcialmente hereditarios. En la década de 1920 y 1930 —tras la aceptación de la teoría cromosómica mendeliana— el surgimiento de la disciplina de la genética de poblaciones, con el trabajo de R. A. Fisher, J. B. S. Haldane y Sewall Wright, unificó la idea de la evolución por selección natural con la genética mendeliana, produciendo la síntesis moderna. La herencia de caracteres adquiridos fue rechazada, mientras que el mutacionismo dio lugar a la maduración de teorías genéticas.
En la segunda mitad del siglo, las ideas sobre genética de poblaciones comenzaron a aplicarse en las nuevas disciplinas de la genética del comportamiento, la sociobiología, y especialmente en seres humanos, la psicología evolutiva. En la década de 1960 W. D. Hamilton entre otros desarrollaron la teoría de juegos enfocada en explicar el altruismo desde una perspectiva evolutiva a través de la selección de parentesco. El posible origen de los organismos superiores a través de la endosimbiosis, en contrastante con los enfoques de la evolución molecular desde una visión centrada en el gen (que tiene a la selección como la causa predominante de la evolución) y la teoría neutralista (que hace de la deriva genética un factor clave) dio lugar a debates permanentes sobre el equilibrio adecuado entre adaptacionismo y contingencia en la teoría evolutiva. En la década de 1970, Stephen Jay Gould y Niles Eldredge propusieron la teoría del equilibrio puntuado, que sostiene que la inmutabilidad es la característica más destacada del registro fósil, y que la mayoría de los cambios evolutivos se producen rápidamente durante periodos relativamente cortos de tiempo. En 1980, Luis Álvarez y Walter Alvarez propusieron la hipótesis de que un impacto astronómico fue el responsable de la extinción masiva del Cretácico-Terciario. También en la década de 1980, el análisis estadístico en los registros fósiles de organismos marinos publicado por Jack Sepkoski y David M. Raup, llevó a una mejor apreciación de la importancia de los eventos de extinción masiva en la historia de la vida en la Tierra.
Bioquímica, microbiología y biología molecular
A finales del siglo XIX todas las principales rutas en el metabolismo de fármacos habían sido descubiertas, gracias a la comprensión del metabolismo de proteínas y ácidos grasos y de la síntesis de urea. En las primeras décadas del siglo XX, los componentes menores en los alimentos de la nutrición humana, las vitaminas, comenzaron a ser aislados y sintetizados. Las mejoras en técnicas de laboratorio como la cromatografía y la electroforesis llevaron a los rápidos avances en la química fisiológica, que —como bioquímica— comenzó a adquirir independencia de sus orígenes médicos. En las décadas de 1920 y 1930, los bioquímicos —dirigidos por Hans Krebs y Carl y Gerty Cori— comenzaron a trazar muchas de las rutas metabólicas centrales para la vida: el ciclo del ácido cítrico, la glucogénesis, la glucólisis y la síntesis de esteroides y porfirinas. Entre los años 1930 y 1950, Fritz Lipmann entre otros establecieron el papel del ATP como el portador universal de energía en la célula, y de la mitocondria como el centro energético de la célula. Tales trabajos tradicionalmente bioquímicos, continuaron siendo activamente perseguidos durante todo el siglo XX y en el siglo XXI.
Orígenes de la biología molecular
Tras el ascenso de la genética clásica, muchos biólogos, —incluyendo una nueva ola de físicos en la biología— persiguieron la interrogante del gen y su naturaleza física. Warren Weaver, jefe de la división científica de la Fundación Rockefeller, distribuyó subvenciones para promover la investigación que aplicara los métodos de la física y la química a los problemas biológicos básicos, acuñando el término de biología molecular para este enfoque en 1938, muchos de los avances biológicos significativos de las décadas de 1930 y 1940 fueron financiados por la Fundación Rockefeller.
Como en la bioquímica, la superposición de las disciplinas de la bacteriología y la virología (más tarde combinadas como microbiología), situadas entre la ciencia y la medicina, se desarrolló rápidamente en el siglo XX. El aislamiento del bacteriófago por Félix d’Herelle durante la Primera Guerra Mundial inició una larga línea de investigación que se centró en los virus bacteriófagos y las bacterias que infectan.
El desarrollo del estándar, organismos genéticamente uniformes que pudieran producir resultados experimentales repetibles, fue esencial para el desarrollo de la genética molecular. Después de los primeros trabajos con la mosca Drosophila y el maíz, la adopción de sistemas modelo más simples como el moho del pan Neurospora crassa hizo posible la conexión entre la genética y la bioquímica, y más importante, con la hipótesis «un gen, una enzima» de Beadle y Tatum en 1941. Experimentos genéticos en sistemas aún más simples como el virus del mosaico del tabaco y el bacteriófago, ayudado por las nuevas tecnologías de la microscopía electrónica y la ultracentrifugación, obligó a los científicos a volver a evaluar el significado literal de vida; la herencia del virus y la reproducción de las estructuras celulares nucleoproteicas fuera del núcleo («plasmagenes») complicaron la teoría cromosómica mendeliana aceptada.
Oswald Avery mostró en 1943 que el ADN era probablemente el material genético de los cromosomas, y no sus proteínas; la cuestión se resolvió decisivamente con el experimento de Hershey y Chase en 1952, una de las muchas contribuciones del llamado grupo del fago centrado en torno al físico y biólogo Max Delbrück. En 1953 James D. Watson y Francis Crick, basándose en el trabajo de Maurice Wilkins y Rosalind Franklin, sugirieron que la estructura del ADN era una doble hélice. En su famoso artículo «Estructura molecular de los ácidos nucleicos», Watson y Crick observaron tímidamente: «No se nos escapa que el emparejamiento específico que hemos postulado sugiere inmediatamente un posible mecanismo de copiado del material genético». Después de 1958 el experimento de Meselson-Stahl confirmó la replicación semiconservativa del ADN, con lo que era evidente para la mayoría de los biólogos que la secuencia de ácido nucleico de alguna manera debía determinar la secuencia de aminoácidos en las proteínas; el físico George Gamow propuso que un código genético fijo relacionaba las proteínas y el ADN. Entre 1953 y 1961, había pocos secuencias biológicas conocidas, —ni siquiera el ADN o las proteínas— pero sí una gran cantidad de sistemas de código propuestos, una situación aún más complicada por el incremento en el conocimiento de la función intermediaria del ARN. Para realmente descifrar el código, se realizaron una extensa serie de experimentos en la bioquímica y la genética bacteriana, entre 1961 y 1966 —muy importantemente el trabajo de Nirenberg y Khorana.
Expansión de la biología molecular
Además de la División de Biología en el Instituto de Tecnología de California (Caltech), el Laboratorio de Biología Molecular (y sus precursores) en Cambridge, y un puñado de otras instituciones, el Instituto Pasteur se convirtió en un importante centro de investigación de la biología molecular a finales de la década de 1950. Los científicos de Cambridge, dirigidos por Max Perutz y John Kendrew, se centraron en el campo de rápido desarrollo de la biología estructural, combinando la cristalografía de rayos X con el modelado molecular y las nuevas posibilidades de cálculo de la computación digital (ambos beneficiados directa e indirectamente con la financiación militar de la ciencia). Más tarde, un número de bioquímicos dirigidos por Fred Sanger se unió al laboratorio de Cambridge, reuniendo así el estudio de la estructura y función macromolecular. En el Instituto Pasteur, François Jacob y Jacques Monod continuaron el experimento PaJaMo de 1959 con una serie de publicaciones sobre el operón lac que estableció el concepto de regulación genética e identificaron lo que llegó a ser conocido como ARN mensajero. A mediados de la década de 1960, el núcleo intelectual de la biología molecular —un modelo para las bases moleculares del metabolismo y la reproducción— estuvo en gran parte completo.
Entre finales de la década de 1950 hasta principios de la década de 1970 fue un período de intensa investigación y expansión institucional para la biología molecular, que se ha convertido en una disciplina coherente sólo recientemente. Los métodos y profesionales en biología molecular crecen con rapidez en lo que el biólogo organísmico E. O. Wilson ha llamado «la guerra molecular», a menudo llegando a dominar departamentos e incluso disciplinas enteras. La molecularización fue particularmente importante para la genética, la inmunología, la embriología y la neurobiología, mientras que la idea de que la vida es controlada por un «programa genético» —una metáfora que Jacob y Monod introdujeron desde los campos emergentes de la cibernética y las ciencias de la computación— se convirtió en un punto de vista influyente en toda la biología. La inmunología en particular, se vinculó con la biología molecular, fluyendo la innovación en ambos sentidos: la teoría de la selección clonal desarrollada por Niels Kai Jerne y Frank Macfarlane Burnet a mediados de 1950 ayudó a arrojar luz sobre los mecanismos generales de la síntesis de proteínas.
La resistencia a la creciente influencia de la biología molecular fue especialmente evidente en la biología evolutiva. La secuenciación de proteínas tuvo un gran potencial para el estudio cuantitativo de la evolución (a través de la hipótesis del reloj molecular), pero importantes biólogos evolutivos cuestionaron la relevancia de la biología molecular para responder a las grandes preguntas de la causalidad evolutiva. Departamentos y disciplinas fracturadas, así como biólogos organicistas afirmaron su importancia e independencia: Theodosius Dobzhansky hizo la famosa declaración de que «nada en biología tiene sentido excepto a la luz de la evolución» como una respuesta al desafío molecular. El problema se hizo aún más crítico a partir de 1968; la teoría neutralista de la evolución molecular de Motoo Kimura sugiere que la selección natural no fue la causa de la evolución en todas partes, por lo menos a nivel molecular, y que la evolución molecular podría ser un proceso fundamentalmente diferente de la evolución morfológica. La resolución de esta «paradoja molecular/morfológica» ha sido un tema central de la investigación de la evolución molecular desde la década de 1960.
Biotecnología, ingeniería genética y genómica
La biotecnología, en un sentido general ha sido una parte importante de la biología desde finales del siglo XIX. Con la industrialización en la elaboración de cerveza y la agricultura, los químicos y biólogos se dieron cuenta del gran potencial de los procesos biológicos controlados por humanos. En particular, la fermentación resultó ser de gran ayuda para las industrias químicas. Para inicios de la década de 1970, una amplia gama de biotecnologías fueron desarrolladas, desde drogas como la penicilina y los esteroides, hasta alimentos como Chlorella y proteína de origen unicelular para gasohol, así como una amplia gama de cultivos de alto rendimiento híbridos y tecnologías agrícolas, la base de la Revolución Verde.
ADN recombinante
La biotecnología en el sentido moderno de la ingeniería genética comenzó en la década de 1970 con la invención de técnicas de ADN recombinante. Las enzimas de restricción fueron descubiertas y caracterizadas a finales de la década de 1960, siguiendo los pasos de aislamiento, luego duplicación y luego síntesis de genes virales. Comenzando con el laboratorio de Paul Berg en 1972 (ayudado por la EcoRI del laboratorio Herbert Boyer basándose en el trabajo con la ligasa del laboratoria Arthur Kornberg), los biólogos moleculares pusieron todas estas piezas juntas para producir el primer organismo transgénico. Poco después, otros comenzaron a usar vectores plásmidos y a añadir genes para la resistencia a antibióticos, incrementando considerablemente el alcance de las técnicas de recombinación.
Cautelosa ante los peligros potenciales (particularmente la posibilidad de una bacteria prolífica con un gen viral causante de cáncer), la comunidad científica, así como una amplia gama de científicos independientes reaccionaron hacia estos desarrollos tanto con entusiasmo como con reservas temerosas. Prominentes biólogos moleculares conducidos por Berg, sugirieron una moratoria temporal sobre las investigaciones con ADN recombinante hasta que los peligros pudiesen ser juzgados y las políticas pudiesen ser creadas. Esta moratoria fue largamente respetada, hasta que los participantes de la Conferencia de Asilomar sobre ADN Recombinante crearon recomendaciones políticas y concluyeron que la tecnología podía ser utilizada con seguridad.
Después de Asilomar, nuevas técnicas y aplicaciones de la ingeniería genética se desarrollaron rápidamente. Los métodos de secuenciación de ADN mejoraron mucho (iniciados por Fred Sanger y Walter Gilbert), al igual que la síntesis de oligonucleótidos y las técnicas de transfección. Los investigadores aprendieron a controlar la expresión de los transgenes, y pronto se apresuraron —tanto en el contexto académico como en el industrial— a crear organismos capaces de expresar genes humanos para la producción de hormonas humanas. Sin embargo, esta fue una tarea de mayores proporciones de las que los biólogos moleculares habían esperado; los desarrollos entre 1977 y 1980 mostraron que, debido a los fenómenos de división y empalme de los genes, los organismos superiores tienen un sistema de expresión genética mucho más complejo que el de las bacterias modelo usadas en estudios anteriores. El primer puesto en la carrera por la síntesis de la insulina humana fue ganado por Genentech. Esto marcó el inicio de la explosión biotecnológica (y con ella, la era de las patentes genéticas) con un nivel de solapamiento sin precedentes entre la biotecnología, la industria y la ley.
Sistemática y genética molecular
Durante la década de 1980, la secuenciación de proteínas había ya transformado los métodos de clasificación científica de los organismos (especialmente la cladística) pero los biólogos pronto comenzaron a usar las secuencias de ARN y ADN como caracteres; esto incrementó la significatividad de la evolución molecular dentro de la biología evolutiva, como resultado la sistemática molecular podría ser comparada con los árboles evolutivos tradicionales basados en la morfología. Siguiendo las ideas pioneras de Lynn Margulis sobre la teoría endosimbiótica, que sostiene que algunos de los orgánulos de las células eucariotas se originaron a partir de organismos procariotas sin vida a través de relaciones simbióticas, incluso la división global del árbol de la vida ha sido revisado. En la década de 1990, los cinco dominios (plantas, animales, hongos, protistas, y moneras) se convirtieron en tres (Archaea, Bacteria, y Eukarya) con base en el trabajo pionero sobre sistemática molecular de Carl Woese con la secuenciación del ARN ribosomal 16S.
El desarrollo y la popularización de la reacción en cadena de la polimerasa (PCR) a mediados de 1980 (por Kary Mullis y otros científicos de Cetus Corporation) marcó otro hito en la historia de la biotecnología moderna, incrementando considerablemente la facilidad y rapidez del análisis genético. Junto con el uso de los marcadores de secuencia expresada, la PCR condujo al descubrimiento de muchos más genes que pueden encontrarse a través de bioquímicos tradicionales o métodos genéticos y abrió la posibilidad de secuenciar genomas completos.
La unidad de gran parte de la morfogénesis de los organismos desde el huevo fertilizado hasta el adulto, empezó a ser descifrada tras el descubrimiento de los genes homeobox, primero en moscas de la fruta y luego en otros insectos y animales, incluyendo a seres humanos. Estos desarrollos dieron lugar a avances en el campo de la biología evolutiva del desarrollo hacia la comprensión de cómo los diversos planes corporales de los filos animales han evolucionado y cómo se relacionan entre sí.
El Proyecto Genoma Humano —el más grande y más costoso estudio biológico único jamás realizado— se inició en 1988 bajo la dirección de James D. Watson, después del trabajo preliminar con organismos modelo genéticamente más simples, tales como E. coli, S. cerevisiae y C. elegans. La secuenciación aleatoria y los métodos de descubrimiento de genes iniciados por Craig Venter —y alimentados por la promesa financiera de las patentes genéticas con Celera Genomics—, condujo a un concurso de secuenciación en los sectores público y privado, que terminó en un compromiso con el primer borrador de la secuencia del ADN humano anunciado en el año 2000.
Fuente: Wikipedia