Formación y evolución de las estrellas


Formación y evolución de las estrellas

Las estrellas se condensan en las regiones del espacio de mayor densidad, aunque esas regiones son menos densas que el interior de una cámara de vacío. Dichas regiones, conocidas como nubes moleculares, consisten principalmente en hidrógeno, con alrededor de 23 a 28 por ciento de helio y algunos elementos más pesados. Un ejemplo de estas regiones de formación de estrellas es la Nebulosa de Orión.​ La mayoría de las estrellas se forman en grupos de decenas a cientos de miles de estrellas.

Las estrellas masivas de estos grupos pueden iluminar poderosamente esas nubes, ionizar el hidrógeno y crear regiones H II. Tales efectos de retroalimentación, a partir de la formación estelar, pueden finalmente interrumpir la nube e impedir la formación de estrellas adicionales.

Todas las estrellas pasan la mayor parte de su existencia como estrellas de la secuencia principal, alimentadas sobre todo por la fusión nuclear del hidrógeno en el helio dentro de sus núcleos. Sin embargo las estrellas de diferentes masas tienen propiedades marcadamente diferentes en varias etapas de su desarrollo. El destino final de las estrellas más masivas difiere del de las estrellas menos masivas, al igual que sus luminosidades y el impacto que tienen en su entorno, por lo que los astrónomos suelen agrupar las estrellas por su masa:

  • Estrellas de masa muy baja, con masas por debajo de 0,5 M, son completamente convectivas y distribuyen helio uniformemente por toda la estrella mientras están en la secuencia principal. Por lo tanto, nunca se someten a la quema del revestimiento ni se convierten en gigantes rojas sino que dejan de fusionarse y pasan a ser enanas blancas de helio, enfriándose lentamente después de agotar su hidrógeno.​ Sin embargo, como la vida de las estrellas 0.5 M es más larga que la edad del universo, ninguna de esas estrellas ha alcanzado la etapa de enana blanca.
  • Estrellas de masa baja (entre las que se incluye el Sol), con una masa entre 0,5 M y 1,8-2,5 M dependiendo de la composición, se convierten en gigantes rojas a medida que su núcleo de hidrógeno se agota y comienzan a quemar helio en el núcleo en un flash de helio; desarrollan un núcleo de carbono-oxígeno, degenerado más tarde en la rama asintótica gigante; finalmente se deshacen de su capa exterior como una nebulosa planetaria y dejan atrás su núcleo en forma de una enana blanca.
  • Estrellas de masa intermedia, entre 1,8-2,5 M y 5-10 M, pasan a través de etapas evolutivas similares a las estrellas de baja masa, pero después de un período relativamente corto en el apelotonamiento rojo se enciende el helio sin flash y pasan por un período prolongado en el apelotonamiento rojo antes de formar un núcleo de carbono-oxígeno degenerado.
  • Estrellas masivas, generalmente tienen una masa mínima de 7-10 M (posiblemente tan baja como 5-6 M). Después de agotar el hidrógeno en el núcleo, estas estrellas se convierten en supergigantes y pasan a fusionar elementos más pesados que el helio. Terminan su vida cuando sus núcleos colapsan y explotan como supernovas.

Formación de estrellas

La formación de una estrella comienza con la inestabilidad gravitacional dentro de una nube molecular causada por regiones de mayor densidad —muchas veces desencadenada por la compresión de las nubes por radiación de estrellas masivas, por la expansión de burbujas en el medio interestelar, por la colisión de diferentes nubes moleculares o por la colisión de galaxias (como en una galaxia con brote estelar)—.​ Cuando una región alcanza una densidad suficiente de materia como para satisfacer los criterios de la inestabilidad de Jeans, comienza a colapsarse bajo su propia fuerza gravitatoria.

A medida que la nube colapsa, los conglomerados individuales de polvo denso y gas forman un «glóbulo de Bok». Cuando este colapsa y aumenta la densidad, la energía gravitacional se convierte en calor y aumenta la temperatura. Cuando la nube protoestelar ha alcanzado aproximadamente la condición estable del equilibrio hidrostático, se forma una protoestrella en el núcleo.

Generalmente estas estrellas de la secuencia pre-principal están rodeadas por un disco protoplanetario y alimentadas principalmente por la conversión de energía gravitacional. Su período de contracción gravitacional dura alrededor de 10 a 15 millones de años.

Las estrellas tempranas de menos de 2 M se llaman estrellas T Tauri, mientras que aquellas con mayor masa son las estrellas Herbig Ae/Be. Estas estrellas recién formadas emiten chorros de gas a lo largo de su eje de rotación, lo que puede reducir el momento angular de la estrella colapsante y dar lugar a pequeñas manchas de nebulosidad conocidas como objetos Herbig-Haro. ​Estos chorros, en combinación con la radiación de estrellas masivas cercanas, pueden ayudar a alejar la nube circundante de la cual se formó la estrella.

Al principio de su desarrollo las estrellas T Tauri siguen la trayectoria de Hayashi: se contraen y disminuyen en luminosidad mientras permanecen aproximadamente a la misma temperatura.

Se observa que la mayoría de las estrellas forman parte de sistemas estelares binarios y las propiedades de estos sistemas son el resultado de las condiciones en las que se formaron.

Una nube de gas debe perder su momento angular para colapsar y formar una estrella. La fragmentación de la nube en múltiples estrellas distribuye parte de ese momento angular. Estas interacciones tienden a dividir más los sistemas binarios separados (blandos), mientras también causan que los sistemas duros pasen a estar vinculados más estrechamente. Esto produce la separación de los sistemas binarios en sus dos distribuciones de poblaciones observadas.

Secuencia principal

Las estrellas consumen alrededor del 90 % de su existencia fusionando hidrógeno en helio a altas temperaturas y en reacciones de alta presión cerca del núcleo. Se afirma que dichas estrellas están en la secuencia principal, y se llaman estrellas enanas. A partir de la secuencia principal de la edad cero, la proporción de helio en el núcleo de una estrella aumentará constantemente, así como también la tasa de fusión nuclear en el núcleo también aumentará lentamente, al igual que la temperatura y luminosidad de la estrella.​ El Sol, por ejemplo, se estima que ha aumentado en luminosidad en un 40 % desde que alcanzó la secuencia principal hace 4 600 millones (4.6 × 109) de años atrás.

Cada estrella genera un viento estelar de partículas que causa un flujo continuo de gas hacia el espacio. Para la mayoría de las estrellas, la masa perdida es insignificante. El Sol pierde 10−14 M cada año,​ o alrededor de 0.01% de su masa total durante toda su vida. Sin embargo las estrellas muy masivas pueden perder 10-7 a 10-5 M☉ cada año, lo que afecta significativamente a su evolución. ​Las estrellas que comienzan con más de 50 M pueden perder más de la mitad de su masa total mientras están en la secuencia principal.

El tiempo que una estrella consume en la secuencia principal depende principalmente de la cantidad de combustible que tiene y de la velocidad a la que lo fusiona. Se espera que el Sol viva 10 mil millones (1010) años. Las estrellas masivas consumen su combustible muy rápidamente y son de corta vida. Las estrellas de baja masa consumen su combustible muy lentamente. Las estrellas de menos de 0,25 M, llamadas enanas rojas, son capaces de fusionar casi toda su masa, mientras que las estrellas de alrededor de 1 M solo pueden fusionar alrededor del 10 % de su masa. La combinación de su lento consumo de combustible y su suministro relativamente grande de combustible utilizable permite que las estrellas de baja masa duren alrededor de un billón (1012) años; las de más de 0,08 M durarán alrededor de 12 billones de años. Las enanas rojas se vuelven más calientes y luminosas cuando acumulan helio. Cuando finalmente se quedan sin hidrógeno, se contraen en una enana blanca y disminuye su temperatura. ​Sin embargo, dado que la vida útil de estas estrellas es mayor que la edad actual del universo (13,8 mil millones de años), no se espera que las estrellas menores de aproximadamente 0,85 M​ se hayan movido de la secuencia principal.

Además de la masa, los elementos más pesados que el helio pueden desempeñar un papel significativo en la evolución de las estrellas. Los astrónomos etiquetan todos los elementos más pesados que los «metales» de helio, y llaman metalicidad a la concentración química de estos elementos en una estrella. La metalicidad de una estrella puede influir en el tiempo que tarda la estrella en quemar su combustible y controla la formación de sus campos magnéticos,​ lo que afecta a la fuerza de su viento estelar.​ Las estrellas más viejas de la población II tienen sustancialmente menos metalicidad que las estrellas más jóvenes de la población I debido a la composición de las nubes moleculares de las que se formaron. Con el tiempo, tales nubes se enriquecen cada vez más en elementos más pesados a medida que las estrellas más viejas mueren y desprenden porciones de sus atmósferas.

Secuencia post principal

A medida que las estrellas de al menos 0,4 M​ agotan su suministro de hidrógeno en su núcleo, comienzan a fusionar hidrógeno en una zona fuera del núcleo de helio. Sus capas externas se expanden y se refrescan enormemente a medida que forman una gigante roja. En unos 5000 millones de años, cuando el Sol entre en la fase de quema de helio, se expandirá hasta un radio máximo de aproximadamente 1 unidad astronómica (150 millones de kilómetros), 250 veces su tamaño actual y perderá el 30 % de su masa actual.

A medida que la combustión de la capa de hidrógeno produce más helio, el núcleo aumenta en masa y temperatura. En una gigante roja de hasta 2,25 M, la masa del núcleo de helio se degenera antes de la fusión de helio. Finalmente, cuando la temperatura aumenta lo suficiente, comienza de manera explosiva la fusión de helio en lo que se llama un flash de helio, y la estrella se contrae rápidamente en radio, aumenta su temperatura superficial y se mueve a la rama horizontal del diagrama HR. Para las estrellas más masivas, la fusión del núcleo de helio comienza antes de que el núcleo se degenere, y la estrella pasa algún tiempo en el apelotonamiento rojo, quemando helio lentamente antes de que la envoltura convectiva externa se colapse y la estrella se mueva a la rama horizontal.

Después de que la estrella haya fusionado el helio de su núcleo, se fusiona el producto de carbono produciendo un núcleo caliente con una envoltura externa de helio de fusión. Entonces la estrella sigue una trayectoria evolutiva llamada rama asintótica gigante (AGB) que es paralela a la otra fase gigante roja descrita, pero con una luminosidad más alta. Las estrellas de AGB más masivas pueden experimentar un breve período de fusión de carbono antes de que el núcleo se degenere.

Estrellas masivas

Durante su fase de quema de helio, una estrella de más de nueve masas solares se expande para formar primero una supergigante azul y luego una roja. Las estrellas particularmente masivas pueden evolucionar a una estrella de Wolf-Rayet, caracterizada por espectros dominados por líneas de emisión de elementos más pesados que el hidrógeno que han alcanzado la superficie debido a la fuerte convección y a la intensa pérdida de masa.

Cuando el helio se agota en el núcleo de una estrella masiva, el núcleo se contrae y la temperatura y presión se elevan lo suficiente como para fusionar el carbono (véase proceso de combustión del carbono). Este proceso continúa, con las etapas sucesivas alimentadas por neón (ver proceso de combustión del neón), oxígeno (véase proceso de combustión del oxígeno) y silicio (véase proceso de combustión de silicio). Cerca del final de la vida de la estrella, la fusión continúa a lo largo de una serie de capas consecutivas dentro de una estrella masiva. Cada capa fusiona un elemento diferente; la capa más externa fusiona el hidrógeno, la siguiente fusiona el helio, y así sucesivamente.

La etapa final se produce cuando una estrella masiva comienza a producir hierro. Dado que los núcleos de hierro están más estrechamente unidos que cualquier núcleo más pesado, cualquier fusión más allá del hierro no produce una liberación neta de energía. Tal proceso continúa en un grado muy limitado, pero consume energía. Del mismo modo, puesto que los núcleos están más estrechamente unidos que todos los núcleos más ligeros, dicha energía no puede ser liberada por fisión.

Colapso

A medida que el núcleo de una estrella se contrae, aumenta la intensidad de la radiación de esa superficie, creando una presión de radiación tal en la capa externa del gas que empujará a esas capas, formando una nebulosa planetaria. Si lo que queda después de que la atmósfera exterior se haya desprendido sea inferior a 1,4 M, se reduce a un objeto relativamente pequeño. del tamaño de la Tierra, conocido como enana blanca. Las enanas blancas carecen de masa suficiente como para que se produzca una compresión gravitacional adicional.​ La materia degenerada de electrones dentro de una enana blanca ya no es un plasma, a pesar de que las estrellas son generalmente conocidas como esferoides de plasma. Finalmente las enanas blancas se desvanecen en enanas negras durante un período de tiempo muy largo.

*La Nebulosa del Cangrejo, restos de una supernova que fue observada por primera vez hacia el año 1050 d. C.

En las estrellas más grandes la fusión continúa hasta que el núcleo de hierro haya crecido tanto (más de 1,4 M) que ya no pueda soportar su propia masa. Este núcleo se colapsará de repente a medida que sus electrones sean impulsados a sus protones, formando neutrones, neutrinos y rayos gamma en una explosión de captura de electrones y desintegración beta inversa. La onda de choque formada por este repentino colapso hace que el resto de la estrella explote en una supernova. Estas se vuelven tan brillantes que pueden eclipsar brevemente a toda la galaxia natal de la estrella. Cuando ocurren dentro de la Vía Láctea, las supernovas han sido históricamente descritas por observadores a simple vista como «nuevas estrellas» donde aparentemente antes no existía ninguna .

Una explosión de supernova expulsa las capas exteriores de la estrella dejando un remanente tal como la Nebulosa del Cangrejo.​ El núcleo se comprime en una estrella de neutrones que a veces se manifiesta como púlsar o erupción de rayos X. En el caso de las estrellas más grandes el remanente es un agujero negro mayor de 4 M.​ En una estrella de neutrones la materia está en un estado conocido como materia degenerada de neutrones, con una forma más exótica de materia degenerada, la materia QCD, presente posiblemente en el núcleo. Dentro de un agujero negro la materia se encuentra en un estado que no es posible entender actualmente.

En las capas externas desprendidas de estrellas moribundas se incluyen elementos pesados que pueden ser reciclados durante la formación de nuevas estrellas. Estos elementos pesados permiten la formación de planetas rocosos. El flujo de salida de las supernovas y el viento estelar de las grandes estrellas desempeñan un papel importante en la formación del medio interestelar.

Estrellas binarias

La evolución posterior a la secuencia principal de las estrellas binarias puede ser significativamente diferente de la evolución de las estrellas individuales de la misma masa. Si las estrellas en un sistema binario son suficientemente cercanas, cuando una de las estrellas se expande para convertirse en una gigante roja puede desbordar su lóbulo de Roche, la región alrededor de una estrella donde el material está gravitacionalmente ligado a esa estrella, lo que lleva a la transferencia de material de una a otra. Cuando se traspasa el lóbulo de Roche puede producirse una variedad de fenómenos como estrellas binarias de contacto, binarias de envoltura común, variables cataclísmicas y supernovas del tipo Ia.


Fuente: Wikipedia

Deja un comentario