Descripción física del universo


Descripción física del universo

Tamaño del universo

Muy poco se conoce con certeza sobre el tamaño del universo. Puede tener una longitud de billones de años luz o incluso tener un tamaño infinito.​ Un artículo de 2003​ dice establecer una cota inferior de 24 gigaparsecs (78 000 millones de años luz) para el tamaño del universo, pero no hay ninguna razón para creer que esta cota está de alguna manera muy ajustada.

El universo observable (o visible), que consiste en toda la materia y energía que podría habernos afectado desde el Big Bang dada la limitación de la velocidad de la luz, es ciertamente finito. La distancia comóvil al extremo del universo visible ronda los 46.500 millones de años luz en todas las direcciones desde la Tierra. Así, el universo visible se puede considerar como una esfera perfecta con la Tierra en el centro, y un diámetro de unos 93 000 millones de años luz. Hay que notar que muchas fuentes han publicado una amplia variedad de cifras incorrectas para el tamaño del universo visible: desde 13 700 hasta 180 000 millones de años luz.

En el Universo las distancias que separan los astros son tan grandes que, si las quisiéramos expresar en metros, tendríamos que utilizar cifras muy grandes. Debido a ello, se utiliza como unidad de longitud el año luz, que corresponde a la distancia que recorre la luz en un año.

Anteriormente, el modelo de universo más comúnmente aceptado era el propuesto por Albert Einstein en su Relatividad General, en la que propone un universo «finito pero ilimitado», es decir, que a pesar de tener un volumen medible no tiene límites, de forma análoga a la superficie de una esfera, que es medible pero ilimitada. Esto era propio de un universo esférico. Hoy, gracias a las últimas observaciones realizadas por el WMAP de la NASA, se sabe que tiene forma plana. Aunque no se descarta un posible universo plano cerrado sobre sí mismo. Estas observaciones sugieren que el universo es infinito.

Forma del universo

Una pregunta importante abierta en cosmología es la forma del universo. Matemáticamente, ¿qué 3-variedad representa mejor la parte espacial del universo?

Si el universo es espacialmente plano, se desconoce si las reglas de la geometría Euclidiana serán válidas a mayor escala. Actualmente muchos cosmólogos creen que el Universo observable está muy cerca de ser espacialmente plano, con arrugas locales donde los objetos masivos distorsionan el espacio-tiempo, de la misma forma que la superficie de un lago es casi plana. Esta opinión fue reforzada por los últimos datos del WMAP, mirando hacia las «oscilaciones acústicas» de las variaciones de temperatura en la radiación de fondo de microondas.

Por otra parte, se desconoce si el universo es conexo. El universo no tiene cotas espaciales de acuerdo al modelo estándar del Big Bang, pero sin embargo debe ser espacialmente finito (compacto). Esto se puede comprender utilizando una analogía en dos dimensiones: la superficie de una esfera no tiene límite, pero no tiene un área infinita. Es una superficie de dos dimensiones con curvatura constante en una tercera dimensión. La 3-esfera es un equivalente en tres dimensiones en el que las tres dimensiones están constantemente curvadas en una cuarta.

Si el universo fuese compacto y sin cotas, sería posible, después de viajar una distancia suficiente, volver al punto de partida. Así, la luz de las estrellas y galaxias podría pasar a través del universo observable más de una vez. Si el universo fuese múltiplemente conexo y suficientemente pequeño (y de un tamaño apropiado, tal vez complejo) entonces posiblemente se podría ver una o varias veces alrededor de él en alguna (o todas) direcciones. Aunque esta posibilidad no ha sido descartada, los resultados de las últimas investigaciones de la radiación de fondo de microondas hacen que esto parezca improbable.

Color del universo

Históricamente se ha creído que el Universo es de color negro, pues es lo que observamos al momento de mirar al cielo en las noches despejadas. En 2002, sin embargo, los astrónomos Karl Glazebrook e Ivan Baldry afirmaron en un artículo científico que el universo en realidad es de un color que decidieron llamar café con leche cósmico.​ Este estudio se basó en la medición del rango espectral de la luz proveniente de un gran volumen del Universo, sintetizando la información aportada por un total de más de 200.000 galaxias.

Homogeneidad e isotropía del universo

Mientras que la estructura está considerablemente fractalizada a nivel local (ordenada en una jerarquía de racimo), en los órdenes más altos de distancia el universo es muy homogéneo. A estas escalas la densidad del universo es muy uniforme, y no hay una dirección preferida o significativamente asimétrica en el universo. Esta homogeneidad e isotropía es un requisito de la Métrica de Friedman-Lemaître-Robertson-Walker empleada en los modelos cosmológicos modernos.

La cuestión de la anisotropía en el universo primigenio fue significativamente contestada por el WMAP, que buscó fluctuaciones en la intensidad del fondo de microondas.​ Las medidas de esta anisotropía han proporcionado información útil y restricciones sobre la evolución del Universo.

Hasta el límite de la potencia de observación de los instrumentos astronómicos, los objetos irradian y absorben la energía de acuerdo a las mismas leyes físicas a como lo hacen en nuestra propia galaxia.​ Basándose en esto, se cree que las mismas leyes y constantes físicas son universalmente aplicables a través de todo el universo observable. No se ha encontrado ninguna prueba confirmada que muestre que las constantes físicas hayan variado desde el Big Bang.

Composición del universo

El universo observable actual parece tener un espacio-tiempo geométricamente plano, conteniendo una densidad masa-energía equivalente a 9,9 × 10−30 gramos por centímetro cúbico. Los constituyentes primarios parecen consistir en un 73 % de energía oscura, 23 % de materia oscura fría y un 4 % de átomos. Así, la densidad de los átomos equivaldría a un núcleo de hidrógeno sencillo por cada cuatro metros cúbicos de volumen. La naturaleza exacta de la energía oscura y la materia oscura fría sigue siendo un misterio. Actualmente se especula con que el neutrino, (una partícula muy abundante en el universo), tenga, aunque mínima, una masa. De comprobarse este hecho, podría significar que la energía y la materia oscura no existen.

*Nebulosa del Águila

Durante las primeras fases del Big Bang, se cree que se formaron las mismas cantidades de materia y antimateria. Materia y antimateria deberían eliminarse mutuamente al entrar en contacto, por lo que la actual existencia de materia (y la ausencia de antimateria) supone una violación de la simetría CP (Véase Violación CP), por lo que puede ser que las partículas y las antipartículas no tengan propiedades exactamente iguales o simétricas,​ o puede que simplemente las leyes físicas que rigen el universo favorezcan la supervivencia de la materia frente a la antimateria. En este mismo sentido, también se ha sugerido que quizás la materia oscura sea la causante de la bariogénesis al interactuar de distinta forma con la materia que con la antimateria.

Antes de la formación de las primeras estrellas, la composición química del universo consistía primariamente en hidrógeno (75 % de la masa total), con una suma menor de helio-4 (4He) (24 % de la masa total) y el resto de otros elementos.​ Una pequeña porción de estos elementos estaba en la forma del isótopo deuterio (²H), helio-3 (³He) y litio (7Li).​ La materia interestelar de las galaxias ha sido enriquecida sin cesar por elementos más pesados, generados por procesos de fusión en las estrellas, y diseminados como resultado de las explosiones de supernovas, los vientos estelares y la expulsión de la cubierta exterior de estrellas maduras.

El Big Bang dejó detrás un flujo de fondo de fotones y neutrinos. La temperatura de la radiación de fondo ha decrecido sin cesar con la expansión del universo y ahora fundamentalmente consiste en la energía de microondas equivalente a una temperatura de 2,725 K.​ La densidad del fondo de neutrinos actual es de 150 por centímetro cúbico.

Estructura cuántica

Según la física moderna, el Universo es un sistema cuántico aislado, un campo unificado de ondas que entra en decoherencia al tutor de la observación o medición. En tal virtud, en última instancia, el entorno del Universo sería no local y no determinista.

Multiversos

Los cosmólogos teóricos estudian modelos del conjunto espacio-tiempo que estén conectados, y buscan modelos que sean consistentes con los modelos físicos cosmológicos del espacio-tiempo en la escala del universo observable. Sin embargo, recientemente han tomado fuerza teorías que contemplan la posibilidad de multiversos o varios universos coexistiendo simultáneamente. Según la recientemente enunciada Teoría de Multiexplosiones se pretende dar explicación a este aspecto, poniendo en relieve una posible convivencia de universos en un mismo espacio.

El universo, ¿una ilusión?

Científicos del King’s College de Londres lograron recrear las condiciones inmediatamente seguidas al Big Bang a través del conocimiento adquirido durante dos años de la partícula de Higgs y llegaron a la conclusión de que, posiblemente, el universo colapsó, hasta dejar de existir casi tan pronto cuando empezó,​ lo que plantea la idea de que todo lo que vemos no existe y solo es el pasado de los astros.


​Fuente: Wikipedia

Deja un comentario